首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The preparation of epoxy/clay nanocomposites (NCs) and their insertion into coatings are of great importance since the NCs could enhance the protective performances. In this study, epoxy NCs with 1–10 wt% of nanoclay Cloisite 30B (C30B) were prepared by the sonication-assisted solution method. The rheological measurements of epoxy/C30B suspensions revealed non-Newtonian, shear-thinning behavior of the uncured NCs, with an increase in the viscosity, yield stress, and shear modules with increasing organoclay content, while the dispersion effectiveness of C30B decreased. A significant enhancement of the rheological parameters was observed at the second percolation threshold (4.1 vol%) due to the formation of a continuous network of 45-layer-thick tactoids. Although NCs with 1–3 wt% C30B exhibited slightly reduced mechanical and adhesion properties compared with the cured reference epoxy resin, the epoxy primer and topcoat based on NC with 1 wt% C30B generally displayed improved impact resistance and maintained flexibility, pendulum hardness, and good adhesion properties. Two-layer coating systems, i.e., NC-based primers and topcoats, had higher corrosion stability in a salt spray chamber compared to the unmodified system.  相似文献   

2.
The aim of this study was to analyze the synergistic effect of clay and zinc nanopigments. Therefore different percentages of Montmorillonite clay nanolayers were added to zinc‐rich polyurethane nanocomposites. Ultrasonication process was used to prepare polyurethane/nanozinc/nanoclay nanocomposites. Then coatings were applied on steel panels with composition of 10 wt% nanozinc and 0.5, 1, 1.5, and 2 wt% nanoclay. TEM and XRD were used to analyze the structural characteristics of the nanocomposites. The results of the structure analysis revealed the size of nanomaterials and confirmed the appropriate dispersion in polymer matrix. The anticorrosive properties of the nanocomposites were investigated using salt fog test and electrochemical impedance spectroscopy (EIS). The results of EIS showed that addition of clay nanolayers improves the corrosion resistance of coatings and the best corrosion performance obtained for the nanocomposite sample with 2 wt% nanoclay. Also, according to the results of the salt spray test, the sample with 2 wt% nanoclay showed the least H2O penetration and exfoliation adjacent to the scratches. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Materials were prepared with Cloisite 30B, diglycidyl ether of bisphenol F and diaminodiphenyl sulfone (DDS) to investigate the relationship between exfoliation and property enhancement. A higher level of exfoliation was found with 4,4′‐DDS than in the material cured with 3,3′‐DDS. The material with 4,4′‐DDS that exhibited a higher degree of exfoliation also resulted in larger improvements in physical properties with nanoclay. Increasing the ratio of trifunctional to difunctional epoxy led to a significant decrease in the level of clay dispersion. Increasing the ratio of trifunctional epoxy in the nanocomposite also caused a decrease in Tg with the addition of nanoclay. However, an increase in Tg with increasing clay loadings was detected in samples with a higher degree of exfoliation, with only difunctional epoxy. Similar behaviour was found for samples with and without a post cure. Excessive post cure led to a decrease in thermal stability in Cloisite 30B‐containing samples. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
Y.W. Chen-Yang  Y.K. Lee  Y.T. Chen  J.C. Wu 《Polymer》2007,48(10):2969-2979
In this work, a stable de-aggregated solvent-swollen organic modified clay, ALA-MMT, suspension is prepared by an efficient solvent swelling process using a home-made shaking mixer. It is found that the estimated average size of the as-prepared organoclay particles in the suspension is reduced to about 155 nm, which has not been reported before. The X-ray diffraction (XRD) patterns confirm that the d-spacing of the silicate layers of the solvent-swollen ALA-MMT expands from 1.4 nm to about 2.1 nm. The de-aggregated solvent-swollen ALA-MMT suspension is then used with polyurethane (PU) to prepare a series of highly exfoliated and high-organoclay-loading nanocomposites, PU/ALA-MMT. Both the XRD patterns and the TEM photographs of the as-prepared PU/ALA-MMT nanocomposites indicate that the organoclay is uniformly dispersed in the PU matrix with a highly exfoliated morphology structure of up to 7 wt% loading. Meanwhile, the TEM photographs give the first report for PU/clay nanocomposites which are almost completely exfoliated, and ∼1-nm thin silicate nanolayers are homogeneously dispersed in the polymer matrix with a high aspect ratio of 30-100. The thermal, mechanical, and anti-corrosion properties are all tremendously enhanced for the as-prepared nanocomposites. The results obtained for the PU nanocomposite with 7 wt% ALA-MMT loading (PUC7) reveal a 19 °C increment in Tg, a 48 °C increment in T5%, a 248% increase in the tensile strength, and a 123% increase in the elongation. The stainless steel disk (SSD) coated with PUC7 shows the lowest corrosion rate of 2.01 × 10−6 mm/year, which is 469% lower than that of the SSD coated with pure PU. The reinforcements are much greater than the previously reported PU/clay nanocomposites with comparable clay loadings ascribed to the exceptional homogeneity of as-prepared nanocomposites, which are accredited largely to the stable de-aggregated solvent-swollen organoclay suspension generated by the efficient solvent swelling process.  相似文献   

5.
Epoxy nanocomposites were prepared using different loadings (2, 3.5, 5 and 6.5 wt%) of ZnO nanoparticles. Nanocomposites were applied on steel substrates. Samples were immersed in 3.5 wt% NaCl solution for 1344 h. Corrosion resistance of the coatings was studied by an electrochemical impedance spectroscopy (EIS). The effects of addition of nanoparticles on the mechanical properties of the epoxy coating were studied by a dynamic mechanical thermal analysis (DMTA). Curing behavior of the coatings containing nanoparticles was studied by a differential scanning calorimeter (DSC). Atomic force microscope (AFM) was utilized to investigate the surface topography and surface morphology of the coatings. Coating resistance against hydrolytic degradation was studied by FTIR (Fourier Transform Infrared).Results showed that addition of low loadings of nanoparticles can increase Tg of the composite. Decrease in Tg and cross-linking density of the coating were observed at high loadings of nanoparticles. It was found that nanoparticles can influence the curing behavior of the epoxy coating. Nanoparticles improved the corrosion resistance of the epoxy coating. Increase in coating resistance against hydrolytic degradation was obtained using nanoparticles.  相似文献   

6.
Preparation and characterization of nylon 11/organoclay nanocomposites   总被引:1,自引:0,他引:1  
Tianxi Liu 《Polymer》2003,44(12):3529-3535
Nylon 11/organoclay nanocomposites have been successfully prepared by melt-compounding. X-ray diffraction and transmission electron microscopy indicate the formation of the exfoliated nanocomposites at low clay concentrations (less than 4 wt%) and a mixture of exfoliated and intercalated nanocomposites at higher clay contents. Thermogravimetric and dynamic mechanical analyses as well as tensile tests show that the degree of dispersion of nanoclay within polymer matrix plays a vital role in property improvement. The thermal stability and mechanical properties of the exfoliated nylon 11/clay nanocomposites (containing lower clay concentrations) are superior to those of the intercalated ones (with higher clay contents), due to the finer dispersion of organoclay among the matrix.  相似文献   

7.
In this study the effect of using nanoclay particles in two different matrices on anticorrosive performance improvement of a novel water-based epoxy coating was investigated. For this purpose, Na+-montmorillonite (Na+-MMT) and organo-montmorillonite (Cloisite 30B) were introduced into water-based hardener (RIPI-W.B.H.) and epoxy resin matrices, separately. Nanoclays were added to polymeric matrices using direct mixing under an ultrasonic homogenizer. The coatings were analyzed to ensure the intercalation and distribution of layered silicates by means of X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses. The structure of products is studied by infrared (IR) spectrometer. The corrosion protection performances of the coatings were investigated using salt spray test and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The results showed that using Cloisite 30B in water-based hardener had the best performance and its application in anticorrosion water-based zinc rich epoxy coating approved of it.  相似文献   

8.
Topcoat constituting multi-layer coatings for wood furniture used in high humidity environments, like bathrooms, must have not only good barrier properties, but also good mechanical properties. Three different types of commercial organoclays, namely Cloisite 10A (C10A), Cloisite 15A (C15A) and Cloisite 30B (C30B), were chosen in this study as reinforcing agents. These nanoparticles were dispersed (1 and 3 wt% into the formulation) into a commercial epoxy acrylate oligomer by means of a three roll mill. Samples obtained from free standing UV-cured coatings were used for mechanical assessments. Mechanical tests were performed in both dynamic and static mode in order to investigate the viscoelastic behavior and tensile properties of coatings. Results from dynamic mechanical analysis have shown that all nanocomposite coatings have higher (72–75 °C) glass transition temperature compared to that observed (71 °C) in unreinforced coatings. The restriction of polymer chains mobility, due to the presence of layered silicate nanoparticles, has been used to explain the increase of glass transition temperature related to the decrease of the free volume. The storage modulus for nanocomposites containing 3 wt% of C10A, C15A and C30B was found to be slightly higher than that observed in pure coatings. The analysis of tensile stress–strain curves has revealed that tensile properties are affected by relative humidity (RH) due to the plasticization effect of humidity. In fact, results have shown that regardless of the organoclay type, the increase of RH decreases both Young's modulus and tensile strength while increasing maximum strain. We believe that low interfaces between photocrosslinked polymer chains and organoclays explain the lack of any effect of organoclays on both storage and Young's moduli. Among samples from each type of UV-cured coating tested at 0, 20 and 80% of RH, regardless of the organoclay type and content, only samples tested (tensile tests in static mode) at RH = 80% were broken. SEM images obtained from the fractured surface of these samples have shown that unreinforced UV-cured coatings and nanocomposite coatings are respectively characterized by smooth and rough fracture surface.  相似文献   

9.
Epoxy-aided dispersion of nanoclay particles in a glassy polymer, polymethylmethacrylate (PMMA), was studied using melt-blending technique. Organically treated nanoclay particles were dispersed in PMMA using mixtures of aromatic and aliphatic epoxies to yield three-phase composite materials, the mechanical properties of which were evaluated and compared with PMMA-nanoclay, epoxy-nanoclay, and PMMA-epoxy composite systems as function of nano- and micro-dispersed domains of phase separated epoxy and nanoparticles. Wide-angle-X-ray diffraction patterns and transmission electron microscope images revealed that the clay particles were in fully exfoliated state in the three-phase composites provided the ratio of epoxy to clay was 10. However, the dispersion of nanoclay to the scale of individual platelets was not achieved as exfoliated clay particles remained as aggregates inside phase separated epoxy domains of approximately 1 μm in diameter. Nevertheless, the values of tensile and impact strengths showed significant improvement over PMMA and PMMA-clay composites.  相似文献   

10.
Intercalated and exfoliated nanocomposites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and Cloisite 30B (C30B) were fabricated by a solution‐casting method to study the effects of the clay loading on the crystallization behavior, thermal stability, and dynamic mechanical properties of PBAT in PBAT/C30B nanocomposites. X‐ray diffraction and transmission electron microscopy results indicated the formation of exfoliated nanocomposites at low clay loadings (<5 wt %) and a mixture of exfoliated and intercalated nanocomposites with a clay content of 8 wt % throughout the PBAT matrix. Nonisothermal melt crystallization studies indicated that C30B enhanced the crystallization of PBAT, apparently because of a heterogeneous nucleation effect. Moreover, an attempt was made to quantitatively study the influence of the presence of C30B and its contents on the nucleation activity of PBAT in the PBAT/C30B nanocomposites. The thermal stability of PBAT decreased slightly in the nanocomposites. However, the storage modulus of PBAT apparently increased with the C30B loading increasing in the PBAT/C30B nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Highly exfoliated and intercalated silicone rubber (SR) nanocomposites based on natural montmorillonite (Cloisite Na+) and organically modified montmorillonite (Cloisite 30B and Cloisite 20A) were successfully prepared by melt‐mixing technique. Dispersion of the nanoclays in the rubber nanocomposites was subsequently investigated. As indicated by the X‐ray diffraction (XRD) analysis, intercalation, and exfoliation of the clay particles in the nanocomposites was achieved at less than 8 parts per hundred (phr) rubber by weight, irrespective of the initial interlayer spacing of the nanoclay particles. Both Cloisite Na+ and Cloisite 30B were spontaneously transformed into exfoliated microstructures during the vulcanisation stage. Overall, the use of the nanoclays in silicone rubber improved the Young's modulus, tensile strength, and elongation at break by more than 50% as compared with the control rubber. In addition, this work provided a fresh insight into the way intercalated and exfoliated morphologies affect mechanical properties of silicone rubber nanocomposites. It was shown that the exfoliated Cloisite Na+ yielded outstanding mechanical properties with low hysteresis at the same loading of the exfoliated Cloisite 30B and intercalated Cloisite 20A organoclays. As expected, the formation of crosslinks affected the mechanical properties of the rubber vulcanizate significantly. POLYM. ENG. SCI., 53:2603–2614, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
In this study, poly(lactic acid) (PLA) films were coated by an ink formulation containing nanoclay dispersed with ultrasonic homogenization for 20 min. Mechanical and barrier properties of the coated films were evaluated according to clay type and concentration. PLA films coated by ink formulations containing Cloisite 30B displayed the best mechanical and barrier properties in six types of nanoclays. PLA films coated by Cloisite 30B‐containing ink varying in clay concentration were investigated. Tensile strength and elongation at break of these coated films were improved in 1% Cloisite 30B. Oxygen permeability decreased significantly upon the addition of clay levels up to 1% and slightly decreased with further increases in the amount of the clay. The value of water vapor permeability also decreased depending on the increases of clay (0%–20%). When the clay content in the sample was 2.0%, the surface of coated PLA films displayed aggregation visible using film emission scanning electron microscopy. X‐ray diffractometry and transmission electron microscopy indicated that a mixture of exfoliated and intercalated structure was formed with addition of 1% (w/w) Cloisite 30B to the ink after ultrasonication. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Poly(vinyl chloride)(PVC) and dioctyl phthalate (DOP) were mixed with 5 and 10 wt % of Cloisite Na+, Cloisite 30B or Cloisite 93A. The obtained nanocomposites were characterized by thermal analysis using a thermogravimetric analyzer which showed that addition of 5 wt % of nanoclay to PVC increased its thermal stability in the sequence: Cloisite Na+< Cloisite 93A< Cloisite 30B. The electrical conductivity of these composites was studied as a function of temperatures and showed that the conductivity of PVC was enhanced upon using 5 wt % of nanoclay in the sequence: Cloisite Na+< Cloisite 30B < Cloisite 93A. The activation energy of interaction of PVC with nanoclay was found to be lowest for the composite containing 5 wt % of nanoclay in the same sequence. The tensile strength, elongation (%), and Young's modulus were considerably enhanced upon increasing the clay content to 5 wt % in the sequence: Cloisite Na+< Cloisite 93A < Cloisite 30B. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study these nanocomposite structures, and it was found that the organoclay layers are homogeneously dispersed in the PVC matrix when 5 wt % of Cloisite 30B or Cloisite 93A was used. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Two types of poly-N-isopropylacrylamide (p-NIPAM)/Cloisite 30B clay nanocomposite (NC) hydrogels were synthesized where the first one contained Cloisite 30B without modification. However, the second one contained Cloisite 30B with glycopolymer units attached onto its surface by surface-initiated atom transfer radical polymerization. The main purpose of this article was to study the effect of surface grafting of glycopolymer onto Cloisite 30B clay surface on the physical properties of the resulting NC hydrogels such as swelling ratio, deswelling behavior and thermal behavior. It was found that NC hydrogels containing glyco-units had better properties than the first one.  相似文献   

15.
Heat ageing and thermal stability of a silicone rubber (SR) filled with montmorillonite clay (MMT) was investigated. Three types of rubber nanocomposites were prepared with highly exfoliated Cloisite 30B (SR/C30B), intercalated/exfoliated Cloisite Na+ (SR/Na+MMT), and highly intercalated Cloisite 20A (SR/C20A). This study showed that the SR/C30B nanocomposite exhibited excellent heat resistance in comparison to the other two nanocomposites and neat SR as revealed by higher retention strength. The thermal stability of the rubber in air was strongly dependent on the clay morphology and increased in the following order: highly intercalated/exfoliated SR/Na+MMT < highly intercalated SR/C20A < highly exfoliated SR/C30B. The thermogravimetric analyses of the SR/C30B nanocomposite showed a substantial increase in the final residue in comparison with the neat SR. This indicated a major improvement in the thermal stability of the rubber containing the exfoliated clay, which was also supported by the higher activation energy of decomposition measured for the nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41061.  相似文献   

16.
The linear dynamic viscoelastic properties and non-linear transient rheology of polycarbonate (PC)/clay nanocomposites were investigated at temperatures ranging from 240 to 280 °C. For the study, nanocomposites of PC and natural montmorillonite (Cloisite Na+) or chemically modified clay (Cloisite 30B) were prepared by melt blending in a twin-screw extruder. Cloisite 30B is a natural montmorillonite modified with methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium chloride (MT2EtOH). In both PC/Cloisite Na+ and PC/Cloisite 30B nanocomposites the concentration of clay was varied from 2.3 to 4.3 wt%. In situ Fourier transform infrared (FTIR) spectroscopy results show that at temperatures ranging from 30 to 280 °C the carbonyl groups in PC and the hydroxyl groups in MT2EtOH of Cloisite 30B in PC/Cloisite 30B nanocomposites formed hydrogen bonds, while no evidence of hydrogen bonding was observed in the PC/Cloisite Na+ nanocomposites. There are no discernible sharp reflections in the X-ray diffraction (XRD) patterns of PC/Cloisite 30B nanocomposites, after Cloisite 30B having the d001 spacing of 1.85 nm was mixed with PC, whereas the d001 spacing changes little (1.17 nm) before and after the mixing of Cloisite Na+ to PC. Transmission electron microcopy (TEM) images show that organoclay platelets are well dispersed in PC/Cloisite 30B nanocomposites, while the untreated clay platelets are poorly dispersed in PC/Cloisite Na+ nanocomposites. The observed differences in XRD patterns and TEM images between the two nanocomposite systems are explained by in situ FTIR spectroscopy. The results of rheological measurements (linear dynamic viscoelasticity, non-linear transient shear flow, and steady-state shear flow) support the conclusions drawn from the results of XRD, TEM, and FTIR spectroscopy.  相似文献   

17.
Epoxy‐clay nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) epoxy reinforced with 2 wt% of four different types of clay were prepared by high shear mixing (HSM) technique. The resultant nanocomposites were investigated to determine the effects of clay addition and clay types on their mechanical, thermal, and physical properties. The XRD and TEM analyses revealed that good dispersions of nanoclay within the epoxy matrix have been achieved especially for the samples prepared with I.30E clay where a combination of disordered intercalated and exfoliated morphology was observed. The structure of samples synthesized with other types of clay was dominated by intercalated morphologies. The tensile results illustrated that the nanocomposite containing I.30E clay has the best mechanical properties as compared to other nanocomposites. This is mainly due to better dispersion of I.30E nanoclay in the epoxy matrix for this nanocomposite. The increase or decrease in the glass transition temperatures of nanocomposites were found to be dependent on the type of clay used. The effect of clay addition on the barrier properties was examined using water exposure test which demonstrated that the addition of 2% of I.30E and C10A clays resulted in 60% reduction in diffusivity. Noticeable reduction in maximum water uptake was also observed for all nanocomposites. The improvement in these physical properties was attributed to the tortuosity effect, where water molecules have to move around clay layers during diffusion in nanocomposites. POLYM. COMPOS., 36:1998–2007, 2015. © 2014 Society of Plastics Engineer  相似文献   

18.
In this work sodium montmorillonite (Na-MMT) was functionalized with N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane and the corresponding silylated clay was used to modify epoxy matrix cured with triethylenetetramine. The grafting/intercalation of the aminosilane inside the clay galleries were followed by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and 29Si cross-polarization magic-angle-spinning nuclear magnetic-resonance (CP/MAS NMR) spectroscopy. Epoxy-based nanocomposites were prepared with different amounts of silylated clay or commercial organoclay, Cloisite 30B, whose intercalating agent consists of a methyl, tallow, bis-2-hydroxyethyl quaternary ammonium salt. The degree of intercalation/exfoliation was estimated by X-ray diffraction experiments and confirmed by small angle X-ray scattering. Nanocomposites prepared with silylated clay displayed no peak in both XRD and SAXS curves whereas those prepared with Cloisite 30B exhibited a clear interference peak corresponding to an interlayer spacing d001 of 4.1 nm. The former also presented a better dispersion, with a high proportion of tactoids smaller than 2 nm, as estimated by SAXS. From the results of dynamic mechanical analysis it was observed that most of the nanocomposites display higher storage modulus mainly at temperatures above the glass transition temperature. The glass transition temperature is similar or higher than the neat epoxy network for nanocomposites containing 1 wt.% of silylated clay or higher.  相似文献   

19.
The use of nanocomposites in textile applications, and in particular of polyurethane (PU) coatings reinforced by various additives [clay and polyhedral oligomeric silsesquioxane (POSS)], has grown in recent years. Some interesting results have been obtained, especially with Cloisite 30B (a montmorillonite organo‐modified by an alkyl ammonium cation bearing two primary hydroxyl functions): the thermal behavior and the reaction to fire were improved, but the structure (microcomposite, exfoliated, intercalated) was not really determined. This study focuses on polyurethane coatings reinforced with Cloisite 30B. The interactions between the diisocyanate and the counterions of Cloisite 30B and the structure obtained were demonstrated and discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 238–244, 2005  相似文献   

20.
Conducting polyaniline, zinc and epoxy resin solely have anticorrosive properties by different mechanisms on metallic substrates. In this work the triple hybrid of PANI/epoxy/Zn nanocomposite was prepared as a thin layer coating (70 ± 5 μm) on iron coupons and its anticorrosion performance was investigated in HCl (0.1 M) as corrosive solution. Epoxy resin and zinc nanoparticles were applied as additives in the PANI matrix to improve the mechanical properties of PANI coating and investigate their synergetic effects on the anticorrosion performance of PANI coating. At first PANI/Zn nanocomposite coatings with different Zn contents were prepared and the zinc content optimized so that the coating achieve the best anticorrosion performance. Accordingly the iron coupons coated by PANI/Zn coating having 4 wt% Zn content showed more noble open circuit potential and lower corrosion current values. Then epoxy resin was applied as additive to the optimized formulation of PANI/Zn coating in different weight percents (0–20 wt%) and the anticorrosion performance of the related PANI/epoxy/Zn triple hybrid nanocomposite coatings was evaluated. Results showed that the addition of epoxy resin causes to the decreasing of corrosion current of iron samples coated by PANI/epoxy/Zn nanocomposite. An optimum range of 3–7 wt% was obtained for the epoxy content in the composition of PANI/epoxy/Zn nanocomposite in which the coating exhibits the best anticorrosion performance. Iron metal coupon was elementally analyzed and the PANI/Zn and PANI/epoxy/Zn nanocomposites were characterized using Fourier Transform Infrared spectroscopy, X-ray diffraction patterns and Scanning Electron Microscopy techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号