首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The geometry of rotary aircraft engine components is usually defined by thin mechanical elements and complex surfaces that are only achievable by 5-axis machining due to either limited access or the design itself. Such thin-walled characteristics make these components susceptible to vibrations while machining and usually require careful manipulation of the toolpath parameters to minimize cutting forces and vibration. Moreover, the tool suppliers’ approach leans towards the feature-build design of cutter geometry to increase the productivity and quality of a machined surface. Some examples of those recent improvements for rotary aircraft engine components are barrel-shaped tools that attempt to increase the contact radius on the tool-part interface to minimize step-over while conserving the scallop height to meet roughness tolerances. This research aims to fill a gap in the current literature by proposing a stability model for barrel-shaped tools. Stability contour maps make use of a mechanistic dynamic force model for barrel-shaped tools. The force model is also capable of including tool runout and orientation angles, tilt and lead, as named in most CAM software. By simulating dynamic forces on the time domain, a contour map is presented to address unstable vibrations. Since forced vibrations and surface location error (SLE) may also appear when milling aircraft parts, SLE and surface roughness are also determined. Finally, given the complexity and number of parameters, validation of the stability maps is performed through experimental chatter tests using a thin wall component.  相似文献   

2.
The modelling of the dynamic processes in milling and the determination of chatter-free cutting conditions are becoming increasingly important in order to facilitate the effective planning of machining operations. In this study, a new chatter stability criterion is proposed, which can be used for a time domain milling process simulation and a model-based milling process control. A predictive time domain model is presented for the simulation and analysis of the dynamic cutting process and chatter in milling. The instantaneous undeformed chip thickness is modelled to include the dynamic modulations caused by the tool vibrations so that the dynamic regeneration effect is taken into account. The cutting force is determined by using a predictive machining theory. A numerical method is employed to solve the differential equations governing the dynamics of the milling system. The work proposes that the ratio of the predicted maximum dynamic cutting force to the predicted maximum static cutting force can be used as a criterion for the chatter stability. Comparisons between the simulation and experimental results are given to verify the new model.  相似文献   

3.
Abstract

This study designed an automatic cutting feed adjustment system for computer numerical control (CNC) turning machine tools, which integrate the operational characteristics of cutting force control and chatter suppression control to shorten the machining time and maintain the quality of workpieces. The setting of appropriate machining conditions (such as cutting feed, spindle speed and depth of cut) to consider both machining quality and efficiency often causes difficulties for machine tool operators. Therefore, this study uses cutting force control to design an automatic cutting feed adjustment method for cutting tools, and then, the chatter suppression control design is used to modify the cutting force command to suppress cutting chatter. The experimental results of the CNC turning machine tool show that the use of the cutting force control to adjust the cutting feed can shorten the machining time; however, the cutting chatter results in larger surface waviness on the workpiece surface. When the cutting force command is properly modified by actuating the chatter suppression control, the workpiece shows better surface roughness with prolonged machining time. Therefore, the cutting tests demonstrate that the proposed system is feasible for satisfying the machining requirements of the manufacturing processes of mechanical parts for high speed and high accuracy.  相似文献   

4.
Self-excited anomalous vibrations called chatter affected milling operations since the beginning of the industrial era. Chatter is responsible for bad surface quality of the machined part and it may severely damage machining system elements. Although the significant advances of recent years, state of the art dynamic models are not yet able to completely explain chatter onset even when some conventional cutting tools are applied for conventional milling operations. In this work, a more general model of regenerative chatter is presented. The model takes into account some additional degrees of freedom and cutting forces which are neglected in the classical approach. By so doing, a more accurate representation of milling dynamics is obtained, especially when considering large diameter cutters. An improved mathematical formulation of regenerative cutting forces is provided with respect to a very recent publication where the new model has been first outlined. This approach allows ?45 % of computation time. Moreover, here a new, independent, and stronger experimental validation is provided, where the new model successfully predicts an increase of about +(50 ÷ 100) % of the stability boundaries with respect to the classical prediction, thus showing the potential breakthrough of the new approach.  相似文献   

5.
Development of chatter detection in milling processes   总被引:1,自引:1,他引:0  
The aim of this research is to develop an in-process detection of the chatter for the actual milling processes regardless of any cutting condition within the small data processing time by utilizing the dynamic cutting forces obtained during cutting. The proposed method introduces three parameters, which are calculated and obtained by taking the ratio of the average variances of the dynamic cutting forces of three force components, to identify the chatter. The algorithm was developed and implemented on five-axis computer numerical control machining center to detect the chatter in ball-end milling and end milling processes. The chatter and the nonchatter can be simply detected during the in-process cutting by mapping the obtained values of three parameters in the reference feature spaces regarding the determined threshold values. The experimental results showed that the proposed method can be effectively used to detect the chatter during cutting even though the cutting conditions are changed.  相似文献   

6.
Extensive researches have been carried out on machine tool chatter to obtain assessment procedure and improvement measures. In this study, chatter limit is predicted on a newly fabricated universal machining center by the combination of structural dynamic characteristics and cutting mechanics. We showed the unstable cutting conditions, and from them we could plot the unstable borderlines. From the chatter simulations we could say that the newly built universal machining center can be well used in the finishing machining of steel as other common machine tools.  相似文献   

7.
切削加工颤振智能监控技术是智能机床中不可或缺的一部分,是智能加工的一个重要发展方向。它对于提高零件的加工精度与效率,增加企业的运营绩效具有重要的意义。以传感器的选择、特征提取、颤振识别和颤振抑制为主线,系统的综述了切削加工过程中颤振智能监控的研究进展。分析颤振信号的选择和时域、频域、时频域以及特征自适应智能提取的特征提取方法;分析神经网络、支持向量机、隐马尔科夫模型、混合模型和在线智能进化模型在颤振识别中的应用;着重分析基于主轴转速调整的颤振智能控制方法。在此基础上,对切削加工颤振智能监控的研究难点进行了分析,并总结了目前存在的问题。最后,对切削加工颤振智能监控技术今后的发展趋势进行了展望。  相似文献   

8.
The chatter stability in milling severely affects productivity and quality of machining. Tool wear causes both the cutting coefficient and the process damping coefficient, but also other parameters to change with cutting time. This variation greatly reduces the accuracy of chatter prediction using conventional methods. To solve this problem, we consider the cutting coefficients of the milling system to be both random and time-varying variables and we use the gamma process to predict cutting coefficients for different cutting times. In this paper, a time-varying reliability analysis is introduced to predict chatter stability and chatter reliability in milling. The relationship between stability and reliability is investigated for given depths and spindle speeds in the milling process. We also study the time-varying chatter stability and time-varying chatter reliability methods theoretically and with experiments. The results of this study show that the proposed method can be used to predict chatter with high accuracy for different cutting times.  相似文献   

9.
Method for early detection of the regenerative instability in turning   总被引:1,自引:1,他引:0  
Nowadays, approaches in chatter detection and control are based on chatter prediction, by using a machining system dynamic model, or on chatter detection by different techniques, but after chatter onset. They are not efficient because the models are complicated and specific (in the first case) respectively because of chatter unwanted consequences occurrence (in the second case). This paper presents a method for early detection of the process regenerative instability state (as a specific process current dynamical state), based on cutting force monitoring. Using the cutting force records, the process current dynamical state is assessed. Appropriate cutting force signal features are defined, based on signal statistic processing, signal chaotic modeling or signal harmonic analysis, and used on this purpose. The process dynamical state evolution is modeled aiming the features values prediction. Two types of models were used in this purpose: linear and neural. The instability regenerative mechanism is identified by using either dedicated features or input variable selection. The method was conceived and experimentally implemented in the case of turning process. The results show the method reliability and the possibility of using it in developing an intelligent system for stability control.  相似文献   

10.
弱刚度球头铣刀广泛应用于深腔模具零件的铣削中,加工过程中容易发生颤振,确定加工稳定域是实现稳定铣削的重要手段,但该铣削系统具有变时滞特点,稳定性分析的难度较大,制约着加工质量的提高。为此,提出一种弱刚度球头铣刀铣削稳定性分析方法。首先,建立弱刚度刀具系统的动力学方程;接着,基于Newton-Raphson求解出刀齿选定点的时滞量;最后,基于全离散法提出考虑变时滞再生效应的稳定性分析方法,并利用Floquet定理获得了不同转速所对应的临界切深,构建出铣削稳定性叶瓣图。实验结果表明在叶瓣图的非稳定域铣削时铣削力中含颤振频率成分,所加工表面的S_y和S_a比稳定域内加工表面增大35%和42%,说明该分析方法是可靠的,可为切削参数的选择和优化提供依据。  相似文献   

11.

Chatter causes machining instability and reduces productivity in the metal cutting process. It has negative effects on the surface finish, dimensional accuracy, tool life and machine life. Chatter identification is therefore necessary to control, prevent, or eliminate chatter and to determine the stable machining condition. Previous studies of chatter detection used either model-based or signal-based methods, and each of them has its drawback. Model-based methods use cutting dynamics to develop stability lobe diagram to predict the occurrence of chatter, but the off-line stability estimation couldn’t detect chatter in real time. Signal-based methods apply mostly Fourier analysis to the cutting or vibration signals to identify chatter, but they are heuristic methods and do not consider the cutting dynamics. In this study, the model-based and signal-based chatter detection methods were thoroughly investigated. As a result, a hybrid model- and signal-based chatter detection method was proposed. By analyzing the residual between the force measurement and the output of the cutting force model, milling chatter could be detected and identified efficiently during the milling process.

  相似文献   

12.
High-productivity machining processes cause tool and material defects and even damages in machine spindles. The onset of self-excited vibration, known as chatter, limits this high material removal rate. This chatter vibration refers to machining instability during cutting processes, which results in bifurcation behavior or nonlinear effect wherein the tool and the workpiece are not engaged with each other. In particular, bifurcation for low-radial immersion conditions can be easily promoted and identified. In this study, an experiment on an irregular milling tool as a variable helix and variable pitch geometry was conducted under a flexible workpiece condition. The bifurcation behavior from regenerative chatter was identified and quantified from displacement sensor and inductive sensor measurements. A series of cutting tests was used to measure the vibration signals, which were then analyzed based on the frequency spectrum, the one-per-revolution effect, and the Poincaré section. According to results, Hopf bifurcation and period-one bifurcation instabilities apparently occurred to validate chatter stability prediction through a semi-discretization method. However, period-doubling bifurcation was only determined during the unstable cutting of a uniform tool that was not in variable helix/pitch or an irregular milling tool. An irregular tool geometry caused the modulation of the regenerative effect to suppress chatter, and period-doubling instability could not be exhibited during cutting as a regular tool behavior. This period-one chatter instability of an irregular milling tool should be identified and avoided by practitioners to achieve high productivity in machining using the aforementioned irregular milling tools.  相似文献   

13.
In this study, we developed prototypes of boring tools with anisotropic dynamic stiffness, and their chatter stability was investigated analytically and experimentally. In Part 1, a novel design of boring tools with an anisotropic structure was proposed to improve the nominal stiffness in boring operation, thus resulting in higher chatter stability in simulation. In this part (Part 2), anisotropic boring tools with a holder length-to-diameter ratio (L/D) of 4 and 10 designed in Part 1 were prototyped, and their frequency response functions were evaluated. Then, the chatter stabilities were evaluated through turning experiments. With respect to a L/D4 boring tool with anisotropic structure, the nominal dynamic stiffness was significantly improved within the range of machining conditions that satisfies the appropriate combination of cutting force ratio and chip flow direction, compared to a conventional tool with isotropic structure. We confirmed that the proposed boring tool with an anisotropic structure increases the critical radial depth of cut by approximately 17 times compared with conventional tools. Even with an L/D10 anisotropic boring tool, a similar effect was observed wherein the dynamic stiffness of the tool was improved. In contrast, the effect of improving the dynamic stiffness was insufficient; thus, chatter free cutting could not be realized. Analytical investigations verified the importance of further improvement of dynamic characteristics. To realize stable boring with L/D10 boring tools, it is necessary to further reduce the system compliance while also improving the similarity of the frequency response function.  相似文献   

14.
离散隐马尔可夫模型在颤振预报中的应用研究   总被引:1,自引:0,他引:1  
对于切削过程中颤振孕育的动态模式,提出了基于离散隐马尔可夫模型(DHMM)的模式识别理论预报颤振的新方法。首先对切削过程的振动信号进行FFT特征提取,然后利用自组织特征映射(SOM)神经网络对提取的特征矢量进行冗余信息压缩与预分类编码;再根据多变量DHMM建模理论,对切削颤振孕育的各种过程模式建立相应的DHMM,把矢量编码作为观测序列引入到DHMM中进行机器学习、训练;最后将观测序列引入到DHMM中进行颤振孕育的概率识别尝试。实验表明,该方法对颤振孕育过程识别是十分有效的,颤振预报正确率达93.3%。  相似文献   

15.
A solid trimming method is proposed to determine cutter–workpiece engagement (CWE) maps, which are essential to investigate cutting forces, machining errors, and chatter stability in multi-axis milling. In this method, CWE maps, defined as the instantaneous contact area from the cutting flutes’ entrance to exit, are extracted by trimming the removal volume (RV) with the feasible contact surfaces. Compared to the traditional Boolean operation approach, the trimming method extracts CWE maps without the requirement of abundant surface/surface intersection operations. Moreover, instead of using the union solid model associated with all cutter locations, RV is calculated for the first time by introducing the existing concept of analytical tool swept volume, which is previously limited to tool path planning. Verification tests show that the proposed method has the advantages of high accuracy and efficiency.  相似文献   

16.
为研究高温合金Inconel 625车削过程中锯齿形切屑的产生对颤振的影响,本文通过有限元软件对车削刀具、机床主轴等部件进行模态仿真,获取对应的模态频率;进行不同切削参数的车削试验,采集加速度信号并进行频域分析以获取其FFT功率谱。通过超景深显微镜观察切屑形态,并计算不同切削参数下的切屑锯齿化频率。对比仿真和试验结果发现:当切屑锯齿化频率接近于车床某部件的主振频率时,产生了较大的颤振峰值,这说明锯齿形切屑的产生会诱导切削颤振发生,对切削过程稳定性产生了不利的影响。  相似文献   

17.
High-speed milling of thin-walled part is a widely used application for aerospace industry. The low rigidity components, large quantities of material removed in machining progress, are in the risk of the instability of the progress. In this paper, the thin-walled parts have the similar characteristics with the tools. Therefore, the dynamic model and the stability critical condition determined by the relative dynamic behavior between tool subsystem and workpiece subsystem are put forward. The thin-walled parts’ dynamic character varies greatly with time when machining. The whole workpiece has been divided into several stages by finite element analysis (FEA) so that its various modal parameters in the milling progress can be obtained gradually; thus, the variation due to metal removal has been accurately taken into account. The stability critical condition is predicted by frequency domain method based on the dynamic behavior of the two subsystems. With the respect to time-varying critical stability condition, a three-dimensional lobe diagram has been developed to show the changing conditions of chatter. Finally, the proposed methods and models were proven by series milling experiments.  相似文献   

18.
This paper presents a new technology to realize high-efficiency, smooth-surface, and high-chatter-stability machining of flexible thin plates with the proposed face-milling cutter geometry. Radius end mills are widely utilized for high-efficiency and smooth-surface machining, but they generally have low machining stability, i.e. chatter vibrations often occur. It is well known that the chatter stability depends on the structural flexibility and the cutting conditions, whereas it is less known that it strongly depends on the cutter geometry. In this study, a novel face-milling cutter geometry is proposed to improve chatter stability, especially for regenerative chatter, without sacrificing the high efficiency and the surface smoothness in radius end milling. The validity of the milling technology utilizing the proposed cutter geometry is verified analytically and experimentally.  相似文献   

19.
The micro end milling uses the miniature tools to fabricate complexity microstructures at high rotational speeds. The regenerative chatter, which causes tool wear and poor machining quality, is one of the challenges needed to be solved in the micro end milling process. In order to predict the chatter stability of micro end milling, this paper proposes a cutting forces model taking into account the process nonlinearities caused by tool run-out, trajectory of tool tip and intermittency of chip formation, and the process damping effect in the ploughing-dominant and shearing-dominant regimes. Since the elasto-plastic deformation of micro end milling leads to large process damping which will affect the process stability, the process damping is also included in the cutting forces model. The micro end milling process is modeled as a two degrees of freedom system with the dynamic parameters of tool-machine system obtained by the receptance coupling method. According to the calculated cutting forces, the time-domain simulation method is extended to predict the chatter stability lobes diagrams. Finally, the micro end milling experiments of cutting forces and machined surface quality have been investigated to validate the accuracy of the proposed model.  相似文献   

20.
球头铣刀广泛应用于曲面加工中,因此构造出针对球头铣刀的颤振稳定域叶瓣图意义重大。利用精细积分法对铣削系统二阶动力学方程进行时域数值求解,由切削刃与切触区域不同时刻的关系,确定出时域数值求解方程中所需要的刀刃瞬时切削部位,通过Floquet定理获得了高精度的颤振稳定域叶瓣图,并在三轴数控机床上进行了正确性试验验证。试验结果与预测结果相一致,表明所提供的方法能够为球头铣刀实现无颤振切削加工提供有力的技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号