首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

2.
A new method is described that allows fast target analysis in multidimensional gas chromatography by using a microswitching valve between two GC columns, with cryogenic trapping and rapid re-injection of trapped solutes in the second dimension. The essence of the procedure is that heart-cut fractions from the first column (1D) can be selectively transferred to column 2 (2D), where a moveable cryogenic trap first focuses the transferred solute(s) at the head of the second column and then permits their facile rapid analysis on 2D. Since 2D is a short narrow-bore column, which exhibits very fast analysis (on the order of a few seconds elution), peak responses (heights) are significantly enhanced (by up to 40-fold). Additionally, by using a 2D phase of a selectivity different from that used for 1D, it is possible to also separate components that are not resolved on the first column and to increase the resolution for other compounds. The heart-cut valve isolates the section(s) of solutes of interest from the first column separation, and this provides a considerable simplification to the chromatogram-in addition to the separation and sensitivity advantages. By using this method, multidimensional gas chromatography with multiple heart-cuts can be completed within the same time as the primary column separation. Since the described method permits non-heart-cut fractions to be transferred to a monitor detector, normal detection of these fractions is still permitted. By modulation of the cryotrap, it is also possible to achieve comprehensive two-dimensional gas chromatography for the heart-cut fractions; however, only those compounds passed to the second, separation column, which passes through the cryotrap, will be subjected to GC x GC analysis. The technique and the various modes of operation are described in this paper.  相似文献   

3.
We proposed and investigated a novel adaptive two-dimensional (2-D) microgas chromatography system, which consists of one 1st-dimensional column, multiple parallel 2nd-dimensional columns, and a decision-making module. The decision-making module, installed between the 1st- and 2nd-dimensional columns, normally comprises an on-column nondestructive vapor detector, a flow routing system, and a computer that monitors the detection signal from the detector and sends out the trigger signal to the flow routing system. During the operation, effluents from the 1st-dimensional column are first detected by the detector and, then, depending on the signal generated by the detector, routed to one of the 2nd-dimensional columns sequentially for further separation. As compared to conventional 2-D GC systems, the proposed adaptive GC scheme has a number of unique and advantageous features. First and foremost, the multiple parallel columns are independent of each other. Therefore, their length, stationary phase, flow rate, and temperature can be optimized for best separation and maximal versatility. In addition, the adaptive GC significantly lowers the thermal modulator modulation frequency and hence power consumption. Finally, it greatly simplifies the postdata analysis process required to reconstruct the 2-D chromatogram. In this paper, the underlying working principle and data analysis of the adaptive GC was first discussed. Then, separation of a mixture of 20 analytes with various volatilities and polarities was demonstrated using an adaptive GC system with a single 2nd-dimensional column. Finally, an adaptive GC system with dual 2nd-dimensional columns was employed, in conjunction with temperature ramping, in a practical application to separate a mixture of plant emitted volatile organic compounds with significantly shortened analysis time.  相似文献   

4.
A comprehensive two-dimensional gas chromatography (GC x GC) system (for convenience defined as "split flow" GC x GC), which may be operated at improved gas linear velocities in both dimensions, has been developed. The setup is formed of an apolar 30 m x 0.25 mm i.d. column connected, by means of a Y press fit, to a detector-linked 1 m x 0.1 mm i.d. polar analytical column, which passes through the (cryogenic) modulator, and to a 0.3 m x 0.1 mm i.d. retention gap, which is connected to a manually operated split valve. The latter enables the regulation of gas flows through the second analytical column [e.g., 60:40 (FID) ratio, 50:50 ratio, 40:60 (FID) ratio, etc.], in order to generate the most appropriate gas linear velocity, which is related to each specific analysis. In the pre-sent investigation, two sets of traditional and split flow GC x GC analyses were carried out on a cod liver oil fatty acid methyl ester sample by using the same temperature programs [180-250 degrees C at (a) 3 degrees C/min and at (b) 1.3 degrees C/min] and at an average first-dimension linear velocity of approximately 35.0 cm/s; thus, primary column retention times (and therefore elution temperatures) were essentially maintained. The second-dimension linear velocity was calculated to be approximately 333 cm/s in the traditional applications, while it was split valve-regulated until the most appropriate values [(a) approximately 213 cm/s; (b) approximately 264 cm/s] were attained in the alternative applications. Substantial improvements were observed and measured in the chromatography along the y-axis, while the contour plot chemical class structure was maintained.  相似文献   

5.
Quantitative analysis of naphtha samples is demonstrated using comprehensive two-dimensional gas chromatography (GC x GC) and chemometrics. This work is aimed at providing a GC system for the quantitative and qualitative analysis of complex process streams for process monitoring and control. The high-speed GC x GC analysis of naphtha is accomplished through short GC columns, high carrier gas velocities, and partial chromatographic peak resolution followed by multivariate quantitative analysis. Six min GC x GC separations are analyzed with trilinear partial least squares (tri-PLS) to predict the aromatic and naphthene (cycloalkanes) content of naphtha samples. The 6-min GC x GC separation time is over 16 times faster than a single-GC-column standard method in which a single-column separation resolves the aromatic and naphthene compounds in naphtha and predicts the aromatic and naphthene percent concentrations through addition of the resolved signals. Acceptable quantitative precision is provided by GC x GC/tri-PLS.  相似文献   

6.
Detailed compositional analyses of sedimentary organic matter can provide information on its biotic input, environment of deposition, and level of thermal maturation. Pyrolysis-gas chromatography (py-GC), often coupled with a mass spectrometer (py-GC/MS), is one technique used to provide this information. New developments in comprehensive two-dimensional gas chromatography (GC x GC or 2D-GC), coupled with pyrolysis (py-GC x GC), offer the prospect of providing more complete and quantitative compositional information of complex organic solids, such as kerogen and coals. This study will describe applications of pyrolysis-GC x GC to the characterization of petroleum source rocks using flame ionization detector (FID) and sulfur chemiluminescence detector (SCD). In the hydrocarbon analysis by FID, paraffins, naphthenes, and aromatics form distinct two-dimensional separated groups. In the analysis with SCD, sulfur-containing compounds can be distinguished as different classes, such as mercaptans, sulfides, thiophenes, benzothiophenes, and dibenzothiophenes. Single components or summed bands of homologous components can be analyzed qualitatively and quantitatively. With these detailed molecular fingerprints, the relations between kerogen composition and its biotic input, environment of deposition, and thermal maturation may be better understood.  相似文献   

7.
An instrument for comprehensive two-dimensional gas chromatography (GCxGC) is described using an electrically heated and air-cooled thermal modulator requiring no cryogenic materials or compressed gas for modulator operation. In addition, at-column heating is used to eliminate the need for a convection oven and to greatly reduce the power requirements for column heating. The single-stage modulator is heated by current pulses from a dc power supply and cooled by a conventional two-stage refrigeration unit. The refrigeration unit, together with a heat exchanger and a recirculating pump, cools the modulator to about -30 degrees C. The modulator tube is silica-lined stainless steel with an internal film of dimethylpolysiloxane. The modulator tube is 0.18 mm i.d. x 8 cm in length. The modulator produces an injection plug width as small as 15 ms.  相似文献   

8.
A new instrumental approach for collection of retention index data in the first (1D) and second (2D) dimensions of a comprehensive two-dimensional (2D) gas chromatography (GCxGC) experiment has been developed. First-dimension indexes were determined under conventional linear programmed temperature conditions (Van den Dool indexes). To remove the effect that the short secondary column imposes on derived 1D indexes, as well as to avoid handling of pulsed GCxGC peaks, the proposed approach uses a flow splitter to divert part of the primary column flow to a supplementary detector to simultaneously generate a conventional 1D chromatogram, along with the GCxGC chromatogram. The critical 2D indexes (KovAts indexes) are based upon isovolatility curves of normal alkanes in 2D space, providing a reference scale against which to correlate each individual target peak throughout the entire GCxGC run. This requires the alkanes to bracket the analytes in order to allow retention interpolation. Exponential curves produced in the 2D separation space require a novel approach for delivery of alkane standards into the 2D column by using careful solvent-free solid-phase microextraction (SPME) sampling. Sequential introduction of alkane mixtures during GCxGC runs was performed by thermal desorption in a second injector which was directly coupled through a short transfer line to the entrance of the secondary column, just prior to the modulator so that they do not have to travel through the 1D column. Thus, each alkane mixture injection was quantitatively focused by the cryogenic trap, then launched at predetermined times onto the 2D column. The system permitted construction of an alkane retention map upon which bidimensional indexes of a 25-perfume ingredient mixture could be derived. Comparison of results with indexes determined in temperature-variable one-dimensional (1D) GC showed good correlation. Plotting of the separation power in the second dimension was possible by mapping Trennzahl values throughout the 2D space. The methodology was applied to the separation of a standard mixture composed of 25 analytes (very diverse in polarity and structure) suspected to be allergens in perfume samples. The method will allow straightforward determination of temperature-variable retention indexes of target analytes.  相似文献   

9.
Development of a comprehensive, three-dimensional gas chromatograph (GC3) instrument is described. The instrument utilizes two six-port diaphragm valves as the interfaces between three, in-series capillary columns housed in a standard Agilent 6890 gas chromatograph fitted with a high data acquisition rate flame ionization detector. The modulation periods for sampling column one by column two and column two by column three are set so that a minimum of three slices (more commonly four or five) are acquired by the subsequent dimension resulting in both comprehensive and quantitative data. A 26-component test mixture and quantitative standards are analyzed using the GC3 instrument. A useful methodology for three-dimensional (3D) data analysis is evaluated, based on the chemometric technique parallel factor analysis (PARAFAC). Since the GC3 instrument produces trilinear data, we are able to use this powerful chemometric technique, which is better known for the analysis of two-dimensional (2D) separations with multichannel detection (e.g., GC x GC-TOFMS) or multiple samples (or replicates) of 2D data. Using PARAFAC, we mathematically separate (deconvolute) the 3D data "volume" for overlapped analytes (i.e., ellipsoids), provided there is sufficient chromatographic resolution in each of the three separation dimensions. Additionally, PARAFAC is applied to quantify analyte standards. For the quantitative analysis, it is demonstrated that PARAFAC may provide a 10-fold improvement in the signal-to-noise ratio relative to a traditional integration method applied to the raw, baseline-corrected data. The GC3 instrument obtains a 3D peak capacity of 3500 at a chromatographic resolution of one in each separation dimension. Furthermore, PARAFAC deconvolution provides a considerable enhancement in the effective 3D peak capacity.  相似文献   

10.
Snyder KL  Zare RN 《Analytical chemistry》2003,75(13):3086-3091
We have demonstrated the use of cavity ring-down spectroscopy (CRDS) as a detector for high performance liquid chromatography (HPLC). For this use, we have designed and implemented a Brewster's angle flow cell such that cavity ring-down spectroscopy can be performed on microliter volumes of liquids. The system exhibits a linear dynamic range of 3 orders of magnitude (30 nM to 30 microM quinalizarin at 470 nm) for static measurements and 2 orders of magnitude (0.5 microM to 50 microM) for HPLC measurements. For the static measurements, the baseline noise is 2.8 x 10(-6) AU rms and 1.0 x 10(-5) AU peak-to-peak, and for the HPLC separations, it is 3.2 x 10(-6) AU rms and 1.3 x 10(-5) AU peak-to-peak. The baseline noise is determined after the data are smoothed by an 11-point boxcar average. The peak areas detected from HPLC separations are reproducible to within 2-3%. The HPLC mass detection limit for a molecule with epsilon = 9 x 10(3) M(-1) cm(-1) in a 300-microm path length cell (illuminated volume, 0.5 microL) is reported as 2.5 x 10(-8) g/mL. These results were obtained using a simple pulsed CRDS system and are comparable to, if not better than, a high-quality commercial UV-vis absorption detector for the same path length.  相似文献   

11.
A gas chromatographic method was developed for the quantification of alkylmercury species using microwave-induced plasma atomic emission detection (GC-AED). The column conditioning and analyte derivatization required for previous methods were found to be unnecessary for stable, accurate, and sensitive element-specific detection using GC-AED. Chromatographic and detection parameters such as stationary phase type, stationary phase film thickness, GC column dimensions, helium mobile phase column head pressure, detector makeup gas flow rate, and detector reagent gas type and flow rate were found to significantly affect analyte response. The detection limit for the optimized GC-AED conditions was 0.8 pg (0.1 pg/s) of methylmercury chloride (as mercury). A solid-liquid extraction procedure with preparative gel permeation chromatography cleanup and GC-AED analysis was used to quantify methylmercury in a variety of complex matrix marine materials. The methylmercury quantification method was validated with four marine certified reference materials (CRMs). The method was then applied to 13 standard reference materials, CRMs, and control materials for which no certified reference values for methylmercury have been determined. Four National Institute of Standards and Technology Standard Reference Materials and one control material, which were analyzed using the GC-AED method, were also analyzed by two other laboratories using independent methods to further validate the method.  相似文献   

12.
A high-speed quantitative analysis of aromatic isomers in a jet fuel sample is performed using comprehensive two-dimensional gas chromatography (GC x GC) and chemometrics. A GC x GC separation time of 2.8 min is achieved for three aromatic isomers in jet fuel, which is 5 times faster than a reference method in which a singlecolumn separation resolves two of the three isomers of interest. The high-speed GC x GC separation is more than 10 times faster than a recent GC x GC separation that fully resolves the three components of interest in gasoline. The high-speed GC x GC analysis of jet fuel is accomplished through short GC columns, high gas velocities, and partial chromatographic peak resolution followed by chemometric resolution of overlapped peaks. The standard addition method and an objective retention time alignment algorithm are used to correct for retention time variations prior to the chemometric data analysis. The standard addition method corrects for chemical matrix effects that cause analytes in complex samples to have peak shapes, widths, and retention times that differ considerably from those of calibration standards in pure solvents. The retention time alignment algorithm corrects for the relatively small retention time variations caused by fluctuating instrumental parameters such as flow rate and temperature. The use of data point interpolation in the retention time alignment algorithm results in a more accurate retention time correction then previously achieved. The generalized rank annihilation method (GRAM) is the chemometric technique used to resolve the overlapped GC x GC peaks. The correction of retention time variations allows for successful GRAM signal deconvolution. Using the retention time alignment algorithm, GRAM quantification accuracy and precision are improved by a factor of 4. The methodology used in this paper should be applicable to other comprehensive separation methods, such as two-dimensional liquid chromatography, liquid chromatography coupled with capillary electrophoresis, and liquid chromatography coupled with gas chromatography.  相似文献   

13.
The fast separation of a mixture of 29 compounds by using comprehensive two-dimensional gas chromatography is reported. Capillary column sets with shorter lengths and smaller inner diameter in both the first and second dimensions have been tested, for both fast chiral and achiral separations. Fast chiral separations, which included enantiomer separations of limonene, linalool, citronellol, and alpha-isomethylionone, were achieved within 23 min, which corresponds to approximately 2-fold faster than analyses under conditions previously considered as normal. Fast achiral separations, which do not have the restriction of requiring a minimum quality of chiral resolution, were obtained within 5 min, which is markedly faster than separations on the normal column set under conditions more commonly employed. The achiral fast GC x GC method used a 5 m x 0.1 mm i.d. first dimension column, interfaced to a 0.3 m x 0.05 mm i.d. second column, with temperature program rate of 35 degrees C.min-1; a modulation period of 1 s was employed. Peak widths at baseline on the first column were a little over 1 s, while modulated peak widths at half-height recorded with a flame ionization detector operating at 200 Hz were approximately 30 ms. The benefits and limitations of GC x GC for fast chiral and achiral separations are reported and discussed.  相似文献   

14.
本文建立了毛细管气相色谱法定量分析离子液体中间体N-甲基咪唑含量的分析方法。以N,N-二甲基苯胺作为内标,采用DB-FFAP毛细管柱分离样品,氮磷检测器(NPD)测定N-甲基咪唑含量。线性方程为Y=8.5769x+0.0801,相关系数r=0.9997,线性范围0.02~0.14mg/mL,检测限(LOD)为58.6ng/mL,平均回收率为98.12%,相对标准偏差(RSD)为1.15%。该方法具有操作简便、快速、准确等优点,适合于离子液体中间体N-甲基咪唑的含量测定。  相似文献   

15.
We present here the final design of the cryogenic system where the CUORE detector will be installed in 2010. It is a large cryogen-free cryostat cooled by pulse tubes and by a high-power dilution refrigerator. To avoid radioactive background, about 15000 kg of lead will be cooled to below 1 K and only few construction materials are acceptable. The detector assembly will have a total mass of about 1500 kg and must be cooled to less than 10 mK in a vibration-free environment. We discuss the adopted technical solutions, the results of the preliminary thermal analysis of the system, and its expected performance.   相似文献   

16.
Cai H  Stearns SD 《Analytical chemistry》2004,76(20):6064-6076
A partial modulation method by using a pulsed-flow modulator for comprehensive two-dimensional gas chromatography is proposed. The method is based on the fact that when a pulsed flow of inert gas is introduced into the conjunction between a primary and a secondary column, the concentration of analyte is disturbed, and a plug of higher or lower concentration is created. The plug, which forms a spike signal coupled to the primary GC signal, is then separated in a secondary column, creating a new dimension of GC information. The modulation is partial because only a fraction of the primary signal is modulated and converted into the secondary signal; the remaining primary signal stays unchanged. Therefore, this method yields a comprehensive two-dimensional chromatogram and a primary one-dimensional chromatogram in a single GC run. In this study, the modulation mode, modulation index, and modulation percentage are discussed and the reproducibility of peak areas and retention time are investigated. With a 5.8% modulation percentage and a primary peak half-width 1.7 times wider than the modulation time, the standard deviation for the peak areas are 0.15% for the primary and 0.78% for the secondary chromatograms. Chromatograms of laboratory-mixed hydrocarbons and of high-temperature fuel oil no. 6 standard are demonstrated.  相似文献   

17.
This paper describes a dummy test of a cryogenic heat pipe coupled between the infrared detector and cooler. The cryogenic heat pipe provides efficient thermal conduction for 2 W power over a 87.5 cm length with a maximum temperature difference of 0.91 K at 82 K operating temperature. The test results have useful applications.  相似文献   

18.
Individual liposome measurements by capillary electrophoresis with postcolumn laser-induced fluorescence detection facilitated the determination of liposome property distributions, two-dimensional plots, and an improved characterization of a liposomal preparation. This advancement in liposome analysis was feasible by using a high-sensitivity postcolumn laser-induced fluorescence detector wired for millisecond response. For each individual liposome containing fluorescein, peak height and migration time were determined. From these measurements the individual entrapped volumes and electrophoretic mobilities were determined. Distribution analysis of these properties facilitated comparison of various liposome dilutions and indicated that the method is reproducible and unaffected by the density of liposomes (10(7)-10(9) liposomes/mL) in the suspension. Furthermore, liposomes showed entrapped volumes that vary from 0.3 to 13 fL with apparent radius varying from 370 nm to 1.8 microns. Two-dimensional plots of reduced mobility versus kappa R (Debye parameter x liposome radius) revealed that the liposomes resuspended from a dried film of phospholipids are heterogeneous in regard to the surface charge density of individual liposomes. The described method has the potential of becoming a new tool for characterization of commercial liposomal preparations and theoretical studies.  相似文献   

19.
Rapid, comprehensive two-dimensional gas chromatographic (GC × GC) separations by use of a microfabricated midpoint thermal modulator (μTM) are demonstrated, and the effects of various μTM design and operating parameters on performance are characterized. The two-stage μTM chip consists of two interconnected spiral etched-Si microchannels (4.2 and 2.8 cm long) with a cross section of 250 × 140 μm(2), an anodically bonded Pyrex cap, and a cross-linked wall coating of poly(dimethylsiloxane) (PDMS). Integrated heaters provide rapid, sequential heating of each μTM stage, while a proximate, underlying thermoelectric cooler provides continual cooling. The first-dimension column used for GC × GC separations was a 6 m long, 250 μm i.d. capillary with a PDMS stationary phase, and the second-dimension column was a 0.5 m long, 100 μm i.d. capillary with a poly(ethylene glycol) phase. Using sets of five to seven volatile test compounds (boiling point ≤174 °C), the effects of the minimum (T(min)) and maximum (T(max)) modulation temperature, stage heating lag/offset (O(s)), modulation period (P(M)), and volumetric flow rate (F) on the quality of the separations were evaluated with respect to several performance metrics. Best results were obtained with a T(min) = -20 °C, T(max) = 210 °C, O(s) = 600 ms, P(M) = 6 s, and F = 0.9 mL/min. Replicate modulated peak areas and retention times were reproducible to <5%. A structured nine-component GC × GC chromatogram was produced, and a 21 component separation was achieved in <3 min. The potential for creating portable μGC × μGC systems is discussed.  相似文献   

20.
Isoo K  Terabe S 《Analytical chemistry》2003,75(24):6789-6798
To improve the detection sensitivity of metal ions in capillary zone electrophoresis (CZE), a novel method that combines complex formation and on-line sample preconcentration by sweeping was developed. Sweeping is defined as the picking and accumulating of analytes by a carrier in the background solution, with which they have considerable affinity. In this sweeping method, using ethylenediaminetetraacetic acid as carrier, dynamic complexation to form a UV-absorbing chelate and on-line preconcentration occur simultaneously during a run. The technique was validated in terms of the limit of detection, reproducibility, and sensitivity enhancement. Detection responses of some divalent metal ions, in terms of peak heights, were improved from 60- to 180-fold, relative to conventional CZE which employed precapillary complexation. The limits of detection were in the range of (1.8-23.4) x 10(-8) M. This method was applied to the analysis of trace metal ions in factory wastewater. Furthermore, sweeping in conjunction with sample stacking accompanying electrokinetic injection, cation-selective exhaustive injection (CSEI-sweeping), was also examined. Up to 140 000-fold improvement in detector responses for some divalent and trivalent metal ions was realized by CSEI-sweeping. The limits of detection were in the range (2.4-25.2) x 10(-11) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号