首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
β‐Sheet antimicrobial peptides (AMPs) are well recognized as promising candidates for the treatment of multidrug‐resistant bacterial infections. To dissociate antimicrobial activity and hemolytic effect of β‐sheet AMPs, we hypothesize that N‐methylation of the intramolecular hydrogen bond(s)‐forming amides could improve their specificities for microbial cells over human erythrocytes. We utilized a model β‐sheet antimicrobial peptide, gramicidin S (GS), to study the N‐methylation effects on the antimicrobial and hemolytic activities. We synthesized twelve N‐methylated GS analogues by replacement of residues at the β‐strand and β‐turn regions with N‐methyl amino acids, and tested their antimicrobial and hemolytic activities. Our experiments showed that the HC50 values increased fivefold compared with that of GS, when the internal hydrogen‐bonded leucine residue was methylated. Neither hemolytic effect nor antimicrobial activity changed when proline alone was replaced with N‐methylalanine in the β‐turn region. However, analogues containing N‐methylleucine at β‐strand and N‐methylalanine at β‐turn regions exhibited a fourfold increase in selectivity index compared to GS. We also examined the conformation of these N‐methylated GS analogues using 1H NMR and circular dichroism (CD) spectroscopy in aqueous solution, and visualized the backbone structures and residue orientations using molecular dynamics simulations. The results show that N‐methylation of the internal hydrogen bond‐forming amide affected the conformation, backbone shape, and side chain orientation of GS.  相似文献   

2.
Short proline‐rich antimicrobial peptides (PrAMPs) are a promising class of antibiotics that use novel mechanisms, thus offering the potential to overcome the health threat of multiresistant pathogens. The peptides bind to the bacterial 70S ribosome and can inhibit protein translation. We report that PrAMPs can be divided into two classes, with each class binding to a different site, and thus use different lethal mechanisms. Oncocin‐type peptides inhibit protein translation in Escherichia coli by binding to the exit tunnel of the 70S ribosome with half maximal inhibitory concentrations (IC50 values) of around 2 to 6 μmol L?1, whereas apidaecin‐type peptides block the assembly of the large (50S) subunit of the ribosome, resulting in similar IC50 values. The revealed mechanisms should allow the design of new antibiotics to overcome current bacterial resistance mechanisms.  相似文献   

3.
Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic‐resistant bacteria. One promising example of this is gramicidin A (gA). In its wild‐type sequence, gA is active by permeating the plasma membrane of Gram‐positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin‐resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram‐negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.  相似文献   

4.
Wounds are the ideal setting for the development of micro‐organisms, so it is often necessary to apply a dressing to control bacterial colonization. Cotton is commonly used in dressings, as it exhibits important hydrophilic characteristics such as high moisture and fluid retention properties, but it may provide a sustainable media for the development of micro‐organisms. In this way, the development of new strategies to provide cotton materials with lasting and effective antimicrobial properties is of the utmost importance. Consequently, here we described two processes to develop cotton‐dressings functionalized with antimicrobial peptides (AMPs) magainin I (MagI) and LL‐37, in order to give cotton‐dressings an antibacterial effect. The AMPs showed no cytotoxic effect against human fibroblasts so they are safe to contact with skin. In addition, the functionalized materials with either LL‐37 or MagI present an antimicrobial effect exhibiting inhibition ratios of 89% against Klebsiella pneumoniae and 58% against Staphylococcus aureus, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40997.  相似文献   

5.
Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino‐terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual‐acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif‐containing derivatives of anoplin (GLLKRIKTLL‐NH2), pro‐apoptotic peptide (PAP; KLAKLAKKLAKLAK‐NH2), and sh‐buforin (RAGLQFPVGRVHRLLRK‐NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN–anoplin peptides are attributed to the higher pore‐forming activity along with their ability to cause ROS‐induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN–sh‐buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.  相似文献   

6.
Peptide dendrimers are a class of molecules of high interest in the search for new antibiotics. We used microwave‐assisted, copper(I)‐catalyzed alkyne–azide cycloaddition (CuAAC; “click” chemistry) for the simple and versatile synthesis of a new class of multivalent antimicrobial peptides (AMPs) containing solely arginine and tryptophan residues. To investigate the influence of multivalency on antibacterial activity, short solid‐phase‐ synthesized azide‐modified Arg‐Trp‐containing peptides were “clicked” to three different alkyne‐modified benzene scaffolds to access scaffolds with one, two, or three peptides. The antibacterial activity of 15 new AMPs was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains, including a multidrug‐resistant Staphylococcus aureus (MRSA) strain. With ultrashort (2–3 residues) peptides, a clear synergistic effect of the trivalent display was observed, whereas this effect was not apparent with longer peptides. The best candidates showed activities in the low‐micromolar range against Gram‐positive MRSA. Surprisingly, the best activity against Gram‐negative Acinetobacter baumannii was observed with an ultrashort dipeptide on the trivalent scaffold (MIC: 7.5 μM ). The hemolytic activity was explored for the three most active peptides. At concentrations ten times the MIC values, <1 % hemolysis of red blood cells was observed.  相似文献   

7.
Translocase MraY is the site of action of lysis protein E from bacteriophage ?X174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E. Construction of a helical wheel model for transmembrane helix 9 of MraY and the transmembrane domain of protein E enabled the identification of an Arg‐Trp‐x‐x‐Trp (RWxxW) motif in protein E that might interact with Phe288 of MraY and the neighbouring Glu287. This motif is also found in a number of cationic antimicrobial peptide sequences. Synthetic dipeptides and pentapeptides based on the RWxxW consensus sequence showed inhibition of particulate E. coli MraY activity (IC50 200–600 μM ), and demonstrated antimicrobial activity against E. coli (MIC 31–125 μg mL?1). Cationic antimicrobial peptides at a concentration of 100 μg mL?1 containing Arg‐Trp sequences also showed 30–60 % inhibition of E. coli MraY activity. Assay of the synthetic peptide inhibitors against recombinant MraY enzymes from Bacillus subtilis, Pseudomonas aeruginosa, and Micrococcus flavus (all of which lack Phe288) showed reduced levels of enzyme inhibition, and assay against recombinant E. coli MraY F288L and an E287A mutant demonstrated either reduced or no detectable enzyme inhibition, thus indicating that these peptides interact at this site. The MIC of Arg‐Trp‐octyl ester against E. coli was increased eightfold by overexpression of mraY, and was further increased by overexpression of the mraY mutant F288L, also consistent with inhibition at the RWxxW site. As this site is on the exterior face of the cytoplasmic membrane, it constitutes a potential new site for antimicrobial action, and provides a new cellular target for cationic antimicrobial peptides.  相似文献   

8.
BACKGROUND: The aim of the work presented was to synthesize a series of amphiphilic hyperbranched poly[(amine‐ester)‐co‐(D ,L ‐lactide)] (HPAE‐co‐PLA) copolymers and study the formation of copolymeric micelles. These copolymeric micelle systems are expected to be potential candidates for applications in protein drug delivery. RESULTS: The chemical structures of the copolymers were confirmed by Fourier transform infrared spectroscopy, 13C NMR and thermogravimetric analysis. Fluorescence spectroscopy and dynamic light scattering confirmed the formation of copolymeric micelles of the HPAE‐co‐PLA copolymers. The maintenance of stability of bovine serum albumin (BSA) during release from micelles in vitro was also measured using circular dichroism and fluorescence spectrometry. CONCLUSION: Novel hyperbranched HPAE‐co‐PLA copolymers have been synthesized. Conjugation of PLA to HPAE was proved to be an available method for the preparation of micelles for protein delivery. The BSA‐loaded micelles showed enhanced encapsulation efficiency and the structural stability of BSA was retained during the release process. The hyperbranched polymeric micelles could be useful as drug carriers for protein drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
Growing resistance to antibiotics, as well as newly emerging pathogens, stimulate the investigation of antimicrobial peptides (AMPs) as therapeutic agents. Here, we report a new library design concept based on a stochastic distribution of natural AMP amino acid sequences onto half‐length synthetic peptides. For these compounds, a non‐natural motif of alternating D ‐ and L ‐backbone stereochemistry of the peptide chain predisposed for β‐helix formation was explored. Synthetic D ‐/L ‐peptides with permuted half‐length sequences were delineated from a full‐length starter sequence and covalently recombined to create two‐dimensional compound arrays for antibacterial screening. Using the natural AMP magainin as a seed sequence, we identified and iteratively optimized hit compounds showing high antimicrobial activity against Gram‐positive and Gram‐negative bacteria with low hemolytic activity. Cryo‐electron microscopy characterized the membrane‐associated mechanism of action of the new D ‐/L ‐peptide antibiotics.  相似文献   

10.
In this work, cationized cotton/nylon fabric was treated with reduced graphene oxide (rGO) to produce highly conductive fabric. The fabric was cationized with 3‐chloro‐2‐hydroxy propyl trimethyl ammonium chloride to attract more anionic GO. The fabric was then treated with GO followed by reduction with sodium dithionite. The results of energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy indicated entire coverage of the fabric surface with rGO. The color of fabrics changed to gray‐black and the electrical resistance decreased to 0.6 × 103 Ω sq?1. The washing fastness was measured according to ISO 105‐CO5 for color change and also electrical resistance of the samples demonstrated well stability of rGO on the fabric surface. The antibacterial activities of the treated fabrics improved against Gram‐negative bacteria including Escherichia coli (84.8%) and Pseudomonas aeruginosa (96.4%) and also Gram‐positive bacteria consisting Staphylococcus aureus (100%) and Enterococcus faecalis (98.4%). Further, the treated fabrics indicated an excellent UV reflectance of 100%. Finally heating of the cationized rGO fabric at 220 °C displayed a lower electrical resistance of 0.5 × 103 Ω sq?1. The thermogravimetric analysis showed that heating has a slight effect on the dimensional thermal stability of the treated fabric as shrunk 2.43%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45493.  相似文献   

11.
SecA, a key component of the bacterial Sec‐dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA‐21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure–activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA‐dependent protein‐conducting channel activity and protein translocation activity at low‐ to sub‐micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin‐resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug‐affinity‐responsive target stability and protein pull‐down assays are consistent with SecA as a target for these compounds.  相似文献   

12.
The last two decades have seen the rise of antimicrobial peptides (AMPs) to combat emerging antibiotic resistance. Herein we report the solid‐phase synthesis of short lipidated α/γ‐AA hybrid peptides. This family of lipo‐chimeric peptidomimetics displays potent and broad‐spectrum antimicrobial activity against a range of multi‐drug resistant Gram‐positive and Gram‐negative bacteria. These lipo‐α/γ‐AA hybrid peptides also demonstrate high biological specificity, with no hemolytic activity towards red blood cells. Fluorescence microscopy suggests that these lipo‐α/γ‐AA chimeric peptides can mimic the mode of action of AMPs and kill bacterial pathogens via membrane disintegration. As the composition of these chimeric peptides is simple, therapeutic development could be economically feasible and amenable for a variety of antimicrobial applications.  相似文献   

13.
O6‐Alkylguanine‐DNA alkyltransferases (AGTs) are responsible for the removal of O6‐alkyl 2′‐deoxyguanosine (dG) and O4‐alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O6‐alkylguanine‐DNA‐alkyltransferase) protein, which can repair a range of O4‐alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O4‐alkyl 2′‐deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada‐C and OGT), human AGT, and an OGT/hAGT chimera to remove O4‐methyl and larger adducts (4‐hydroxybutyl and 7‐hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O4‐methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O4 atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct‐containing oligonucleotides and the amounts of repair measured.  相似文献   

14.
Developing new antimicrobial polymers and designing new antimicrobial materials are important research areas for overcoming bacterial resistance. In the present study a new polymer, poly(4‐vinyl‐2‐pyridone), having bioactive structure analogous to that of naturally occurring heterocyclic compounds, was synthesized from 4‐vinylpyridine following a simple protocol. To augment the antibacterial properties of the synthesized polymer, N ‐alkylation of the heterocyclic pyridone moieties was achieved with ethylene chlorohydrin (2‐chloroethanol) to generate choline analogous structure. Also, its N ‐butylated analogue was synthesized as a reference compound to study structure–activity relationship. Structures of the polymers were confirmed using various characterization techniques. Antimicrobial efficacy of the polymers was determined using the minimum inhibitory concentration method in parallel experiments. The test microorganisms used were a Gram (+) bacterium (Staphylococcus epidermidis ), Gram (?) bacteria (Salmonella typhi , Pseudomonas aeruginosa and Escherichia coli ) and a fungus (Candida albicans ). Both the polymer derivatives are far more effective antimicrobial agents than the pristine polymer. Trends in the antimicrobial efficacy of these polymers correlate with their zeta potential values. © 2016 Society of Chemical Industry  相似文献   

15.
Antimicrobial peptides (AMPs) that are able to neutralize toxins are promising antibiotics. In this study we investigated the role of structurally conserved amino acids in reduced human defensin 5 (HD5RED), which is an endogenous peptide with antibacterial action and the ability to neutralize lipopolysaccharide (LPS). Cys residues and high Arg content, rather than Gly18 and Arg6–Glu14, were found to be indispensable for HD5RED binding to lipid A, for penetrating the bacterial outer and inner membranes, and for eliminating bacteria. Otherwise, all the conserved sites were requisite for HD5RED to block the interaction between LPS and LPS-binding protein and to suppress the TLR4–NF-κB signaling pathway initiated by LPS. Accordingly, we designed the acetamidomethylated AcmCys-E21R-HD5RED, which was much more potent than HD5RED at eliminating bacteria and which can neutralize LPS. AcmCys-E21R-HD5RED was also found to exhibit a synergistic effect with ciprofloxacin in killing multidrug-resistant Acinetobacter baumannii. The results of this study, in which multifunctional AMPs were designed based on structure–activity research, may help in the development of more peptide antibiotics.  相似文献   

16.
A series of hyperbranched poly(amine‐ester)‐co‐D ,L ‐lactide (HPAE‐co‐PLA) copolymer were synthesized by ring‐opening polymerization of D ,L ‐lactide with Sn(Oct)2 as catalyst to a fourth generation branched poly(amine‐ester) (HPAE‐OHs4). The chemical structures of copolymers were determined by FTIR, 1H‐NMR, 13C‐NMR, and TGA. Double emulsion (DE) and nanoprecipitation (NP) method were used to fabricate the nanoparticles of these copolymers encapsulating bovine serum albumin (BSA) as a model. DSC thermo‐grams indicated that the nanoparticles with BSA kept stable below 40°C. Different factors which influence on particular size and encapsulation efficiency (EE) were investigated. Their EE to BSA could reach 97.8% at an available condition. In vitro release behavior of NPs showed a continuous release after a burst release. The stability maintenance of BSA in the nanoparticle release in vitro was also measured via circular dichroism and fluorescence spectrometry. The results showed that the copolymer nanoparticles have a promising potential in protein delivery system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
N,O‐(2‐carboxyethyl)chitosan (N,O‐2‐CEC) was prepared from chitosan with 3‐chloropropionic acid as modifying agent and NaOH as binding‐acid agent. 2‐Hydroxypropyl dimethylbenzylammonium N,O‐(2‐carboxyethyl) chitosan chloride (HPDMBA‐CEC) was obtained by the reaction of N,O‐2‐CEC with glycidyl dimethyl benzyl ammonium chloride (GDMBA) using NaOH as catalyst. The structures of chitosan derivatives were characterized by FTIR, 1H NMR, and gel permeation chromatography. The antimicrobial activity of HPDMBA‐CEC was evaluated against a Gram‐negative bacterium Escherichia coli (E.coli) and a Gram‐positive bacterium Staphylococcus aureus (S. aureus). Compared with CTS, N,O‐2‐CEC, and HPDMBA‐CTS, HPDMBA‐CEC had much stronger antimicrobial activity, and this activity increased with increasing substitution degree of quaternary ammonium group (DQ). When the substitution degree of carboxyethylation (DS of CE) was 0.72 and DQ was 0.60, the minimum inhibitory concentrations (MICs) of HPDMBA‐CEC were 3.1 and 6.3 μg/mL against S. aureus and E. coli, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A purified alkaline thermo‐tolerant lipase from Pseudomonas aeruginosa MTCC‐4713 was immobilized on a series of five noble weakly hydrophilic poly(AAc‐co‐HPMA‐cl MBAm) hydrogels. The hydrogel synthesized by copolymerizing acrylic acid and 2‐hydroxy propyl methacrylate in a ratio of 5 : 1 (HG5:1 matrix) showed maximum binding efficiency for lipase (95.3%, specific activity 1.96 IU mg?1 of protein). The HG5:1 immobilized lipase was evaluated for its hydrolytic potential towards p‐NPP by studying the effect of various physical parameters and salt‐ions. The immobilized lipase was highly stable and retained ~92% of its original hydrolytic activity after fifth cycle of reuse for hydrolysis of p‐nitrophenyl palmitate at pH 7.5 and temperature 55°C. However, when the effect of pH and temperature was studied on free and bound lipase, the HG5:1 immobilized lipase exhibited a shift in optima for pH and temperature from pH 7.5 and 55°C to 8.5 and 65°C in free and immobilized lipase, respectively. At 1 mM concentration, Fe3+, Hg2+, NH4+, and Al3+ ions promoted and Co2+ ions inhibited the hydrolytic activities of free as well as immobilized lipase. However, exposure of either free or immobilized lipase to any of these ions at 5 mM concentration strongly increased the hydrolysis of p‐NPP (by ~3–4 times) in comparison to the biocatalysts not exposed to any of the salt ions. The study concluded that HG5:1 matrix efficiently immobilized lipase of P. aeruginosa MTCC‐4713, improved the stability of the immobilized biocatalyst towards a higher pH and temperature than the free enzyme and interacted with Fe3+, Hg2+, NH4+, and Al3+ ions to promote rapid hydrolysis of the substrate (p‐NPP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4252–4259, 2006  相似文献   

19.
A commercial m‐aramid as N‐halamine precursor has been coated onto polyethylene terephthalate (PET) fabric surface by pad‐dry‐curing process. The process is accomplished by padding the scoured PET fabric through the homogeneous m‐aramid solution, drying at 150°C for 3 min, and curing at 230°C for 3 min. The PET surface coated with m‐aramid was characterized using fourier transform infrared‐attenuated total reflection (FTIR‐ATR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). FTIR exhibits new bands in the 1645 and 1524 cm?1 regions as characteristic of m‐aramid bands, which indicate the PET fabric coated with m‐aramid. XPS results show a distinguishable peak at binding energy 398.7 eV, which confirms the nitrogen atom of m‐aramid on the PET surface. In addition, SEM image shows a layer of coating onto the PET surfaces, which demonstrates the presence of m‐aramid coating on the surface of the PET. After exposure to dilute sodium hypochlorite solution, exhibition of antimicrobial activity on the coated PET is attributed to the conversion of N‐halamine moieties from the N‐halamine precursor. The chlorinated PET showed high antimicrobial activity against Gram‐negative and Gram‐positive bacteria. The chlorinated PET coated with 10% m‐aramid exhibited about 6 log reductions of S. aureus and E. coli O157:H7 at a contact time of 10 and 30 min, respectively. Furthermore, the antimicrobial activity was durable and rechargeable after 25 wash cycles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The energetic material 3‐(4‐aminofurazan‐3‐yl)‐4‐(4‐nitrofurazan‐3‐yl)furazan (ANTF) with low melting‐point was synthesized by means of an improved oxidation reaction from 3,4‐bis(4′‐aminofurazano‐3′‐yl)furazan. The structure of ANTF was confirmed by 13C NMR spectroscopy, mass spectrometry, and the crystal structure was determined by X‐ray diffraction. ANTF crystallized in monoclinic system P21/c, with a crystal density of 1.785 g cm−3 and crystal parameters a=6.6226(9) Å, b=26.294(2) Å, c=6.5394(8) Å, β=119.545(17)°, V=0.9907(2) nm3, Z=4, μ=0.157 mm−1, F(000)=536. The thermal stability and non‐isothermal kinetics of ANTF were studied by differential scanning calorimetry (DSC) with heating rates of 2.5, 5, 10, and 20 K min−1. The apparent activation energy (Ea) of ANTF calculated by Kissinger's equation and Ozawa's equation were 115.9 kJ mol−1 and 112.6 kJ mol−1, respectively, with the pre‐exponential factor lnA=21.7 s−1. ANTF is a potential candidate for the melt‐cast explosive with good thermal stability and detonation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号