首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

2.
X-ray diffraction analyses and scanning electron microscopy revealed that Na0.5Bi0.5TiO3 (NBT) and NaTaO3 (NTa) form solid solutions across the whole concentration range. With increasing NTa content the symmetry of the solid solutions gradually changed from rhombohedral, on the NBT-rich side, to orthorhombic, on the NTa-rich side. No morphotropic phase boundary was found between these phases. With increasing NTa content, the perovskite lattice parameter ( a p) and the sintering temperature increase, whereas the grain size decreases. In the case of pure NTa, ceramics with a secondary phase were obtained, identified as Na2Ta8O21, which was formed during the sintering process. A study of the dielectric properties showed that with an increasing concentration of NTa, there was a reduction and broadening of the permittivity maximum, a reduction of the temperatures of the dielectric anomalies, and a reduction of the dielectric losses.  相似文献   

3.
Sodium bismuth titanates Na1/2Bi1/2TiO3 (NBT) doped with 0–3 wt% Er2O3 were prepared by the conventional solid-state reaction method. The X-ray diffraction results revealed that the sintered Er-doped NBT ceramics exhibited a pure perovskite structure with Er3+ concentrations ranging from 0 to 1 wt%. At a low Er2O3 concentration, the Er-doped NBT ceramics showed enhanced electrical properties with dielectric constant ɛ33T0=636, a low dielectric dissipation factor (tan δ=3.3%), a low coercive field ( E c=4.56 kV/mm), and a high piezoelectric constant ( d 33=75 pC/N). The relationship between the composition and properties of Er-doped NBT ceramics has been discussed.  相似文献   

4.
Large plate-like Na0.5Bi0.5TiO3 (NBT) templates have been successfully synthesized from bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 (NBIT) particles by the topochemical method. Because of the highly anisotropic structure, plate-like NBIT particles were first synthesized by the molten-salt process. After the topochemical reaction with the complementary reactants (Na2CO3, and TiO2) in NaCl flux, the layer-structured NBIT particles were transformed to the perovskite NBT templates. The resulting NBT templates are large and of plate-like shape. Our results also reveal that they are more effective in inducing grain orientation in the BNKT-BT ceramics as compared with BIT templates. For a BNKT-BT ceramic textured with 20 wt% of NBT templates, it exhibits a very high degree of grain orientation and gives a large Lotgering factor of 0.89.  相似文献   

5.
Plate-like Na0.5Bi0.5TiO3 (NBT) particles with perovskite structure were synthesized by topochemical microcrystal conversion from plate-like particles of layer-structured Na0.5Bi4.5Ti4O15 (NBIT) at 950°C in NaCl molten salt. As the precursors of NBT, plate-like NBIT particles were first synthesized by molten salt process by the reaction of Bi4Ti3O12, Na2CO3, and TiO2. After the topochemical reactions, layer-structured NBIT particles were transformed to the perovskite NBT platelets. NBT particles with a thickness of approximately 0.5 μm and a length of 10–15 μm retained the morphology feature of the precursor. High-aspect-ratio NBT platelets are suitable templates to obtain textured ceramics (especially NBT-based ceramics) by (reactive) template grain growth process.  相似文献   

6.
The effect of Yb3+-codoping on the upconversion emission intensity in Er3+-doped ZBLAN fluoride glasses is investigated. The codoping of Yb enhanced the emission intensity for the samples excited by an 800-nm laser diode beam. The enhancement in a constant YbF3 content (2 mol%) increased with increasing ErF3 content was about 70% of the initial value at 550 nm for the glasses containing 8 mol% of ErF3. The emission intensity at 550 nm in a constant ErF3 content (5 mol%) increased remarkably with the addition of YbF3 and was maximized around 7 mol% of YbF3 content, giving an increased ratio of about 200% of the initial value. The reason for the enhancement is discussed and it is derived mainly from two-step excitation of Er3+ assisted by Yb3+ excited through the energy transfer from Er3+.  相似文献   

7.
PbTiO3-doped sodium bismuth titanate (Na1/2Bi1/2)1− x Pb x TiO3 of perovskite structure is one of the best-known piezoelectrics/ferroelectrics. However, it has not been properly investigated in any thin-film forms. In this study, the dielectric properties of (Na1/2Bi1/2)0.87Pb0.13TiO3 thin films synthesized via a sol–gel route were investigated. They exhibit a strong frequency dispersion of the dielectric permittivity at relatively high frequencies, which is shifted to lower frequencies with increasing temperature. The electrical behavior can be fitted using Jonscher's universal law for dielectric relaxation. The peculiar dielectric behaviors observed can be ascribed to the coexistence of two different dielectric phases in the films, which is believed to be associated with the growth of the local Pb2+TiO3 nanoclusters upon substitution of Pb2+ for Na+/Bi3+ in the (Na1/2Bi1/2)1− x Pb x TiO3 films.  相似文献   

8.
The ferroic phase-transition behavior of two (Na1/2Bi1/2)TiO3(NBT) crystals grown by flux and by the Czochralski method has been investigated in the present study. Although both the tetragonal and the rhombohedral phases of NBT are expected to be ferroelastic, these crystals exhibit different ferroelastic behavior. The two NBT crystals also show differences in the amount of temperature hysteresis and the thermal expansion coefficients. These differences can be attributed to nonstoichiometry and structural variations dependent on the growing method. The present investigation has revealed a second maximum at −450°C in dielectric constant (( T )) curves, which could indicate that the intermediate tetragonal phase is either polar or antipolar. This maximum, however, originates from space-charge polarization and interaction between the charge carrier and the electrode, such that the tetragonal phase, in fact, is para-electric. The diffuse phase transition (DPT) of the NBT crystal, therefore, is from a paraelectric and ferroelastic tetragonal phase to a ferroelectric and ferroelastic rhombohedral phase. The crystallographic supergroup-subgroup relationships in the ferroic phase transitions of NBT crystals are discussed.  相似文献   

9.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

10.
The dielectric properties of Na0.5Bi0.5TiO3 (NBT) -based composites incorporating silver particles prepared by sintering at a low temperature of ∼900°C are reported. The dielectric constant increases with the amount of metal silver particles in the measured frequency range (150 Hz to 1 MHz), and could be enhanced up to ∼20 times higher than that of pure NBT ceramics, which was ascribed to the effective electric fields developed between the dispersed particles in the matrix and the percolation effect. Further investigation revealed that the dielectric constant of the composites has weak frequency and temperature dependence (−50°C to +50°C).  相似文献   

11.
Y1.9Er0.1O3 and Y1.7Yb0.2Er0.1O3 nanocrystalline powders were prepared via a reverse-strike coprecipitation method using nitrates and ammonia as raw materials. The obtained powders were of cubic-phase structure of Y2O3 and the particle size was in the range of ∼60–80 nm. Strong red (4F9/24I15/2) and green (2H11/2/4S3/24I15/2) upconversion luminescence were observed in all the samples when excited with a 980-nm continuous wave diode laser. The possible upconversion mechanisms in Y1.9Er0.1O3 and Y1.7Yb0.2Er0.1O3 were discussed. Power studies indicated that two-photon processes are responsible for the green and red upconversion luminescence in these systems. The codoping of Yb3+ greatly enhanced the red (4F9/24I15/2) upconversion emission.  相似文献   

12.
Crystals of (Na1/2Bi1/2)TiO3 have grown by the flux technique and the Czochralski method. Nonstoichiometry, twin configurations, and long-range cation ordering in the crystals have been investigated using X-ray diffraction and an optical polarizing microscope. It has been found that nonstoichiometry was induced in the crystal grown by the Czochralski method owing to the volatilization of Bi-rich phase during the crystal growth. This nonstoichiometry in the crystal resulted in less lattice distortion from cubic symmetry, a lower degree of cation ordering, and a larger domain width in twin configuration. Variations in twinning with temperature and isotropization have been investigated.  相似文献   

13.
Microstructure and electrical properties of manganese oxide (MnO)-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 (NBBT) piezoceramics were investigated in this work. X-ray diffraction analysis shows that the suitable substitution of Mn ion into the B site induces the lattice distortion of perovskite NBBT: the solution limit is at 0.3 wt% MnO. Besides, it is observed that the sintering properties can be improved by adding a small amount of MnO, thus increasing the grain size and the relative density. Further, the temperature dependence of the dielectric permittivity of NBBT ceramics indicates that the MnO addition reconstructs the disorder array destroyed by joining BaTiO3 in the Na0.5Bi0.5TiO3 system due to the sizable radius of the B-site cations. Combining these effects of MnO addition, the optimal electrical properties were acquired for NBBT ceramic with addition of 0.30 wt% MnO. The excellent electrical properties of MnO-doped NBBT ceramics indicate its promising application in large displacement actuators.  相似文献   

14.
A novel co-precipitation process was adopted for the preparation of highly sinterable europium-doped lutetia powders using ammonium hydroxide (NH3·H2O) and ammonium hydrogen carbonate (NH4HCO3) as the mixed precipitant. The resultant powders calcined at 1000°C for 2 h showed good dispersity and excellent sinterability. Highly transparent polycrystalline lutetia ceramics with a relative density of ∼99.9% were fabricated by pressureless sintering in flowing H2 atmosphere at 1850°C for 6 h without any additives. The average grain sizes of the transparent material were estimated to be 50–60 μm. Optical in-line transmittance in the visible wavelength region for Lu2O3 ceramics (1 mm in thickness) reached 80%. The luminescence and decay behavior of the obtained transparent plate and the corresponding nanophosphors were also investigated.  相似文献   

15.
The phase relations and the mechanism of solid-state synthesis for the Na0.5Bi0.5TiO3–Li3 x La(2/3)− x (1/3)−2 x TiO3 system were investigated using X-ray powder diffraction, scanning electron microscopy, and thermal analysis. The study revealed that the extent of the homogeneity range—which is related to the A-site substitution between (Na0.5Bi0.5)2+ and (Li3 x La(2/3)− x (1/3)−2 x )2+ pseudo cations of a perovskite structure—depends strongly on the ordering of the (Li3 x La(2/3)− x (1/3)−2 x )2+ species. The solid-state reaction of the compounds in the homogeneity range is completed only after multiple high-temperature firings. However, the system is also subjected to a slow thermal decomposition; this is particularly so for the compounds with a high × value and an increased Li3 x La(2/3)− x (1/3)−2 x TiO3 concentration.  相似文献   

16.
The sol–gel–hydrothermal processing of (Na0.8K0.2)0.5Bi0.5TiO3 (NKBT) nanowires as well as their densification behavior were investigated. The morphology and structure analyses indicated that the sol–gel–hydrothermal route led to the formation of phase-pure perovskite NKBT nanowires with diameters of 50–80 nm and lengths of 1.5–2 μm, and the processing temperature was as low as 160°C, but the conventional sol–gel route tended to lead to the formation of NKBT agglomerated porous structured nanopowders, and the processing temperature was higher than 650°C. It is believed that the gel precursor and hydrothermal environment play an important role in the formation of the nanowires at a low temperature. Owing to the better packing efficiency and therefore a good sinterability of the freestanding nanowhiskers, the pressed pellets made by NKBT nanowires showed >98% theoretical density at 1100°C for 2 h. The sol–gel–hydrothermal-derived ceramics have typical characteristics of relaxor ferroelectrics, and the piezoelectric properties were better than the ceramics prepared by the conventional sol–gel and solid-state reaction.  相似文献   

17.
In the present work, multi-cation-doped (Sr2+–Mg2+) SiAlON ceramics were investigated. MgO and SrO were used in 100:0 and 50:50 molar ratios. The mixture was sintered at 1800° and 1830°C for 1 h in a gas pressure-sintering furnace. The results showed that sintered samples were composed of mainly α- and β-SiAlON phases and small amounts of some Sr-containing phases and SiAlON polytypes. According to Rietveld analysis of X-ray diffraction patterns, Mg is incorporated into the α-SiAlON structure. However, the incorporation of Sr is limited.  相似文献   

18.
Compositions in the Zn2TiO4+ x TiO2 system ( x = 0–0.43) were synthesized via the solid-state reaction route, using high-purity (≥99.99%) metal-oxide powders. The incorporation of titanium, in the form of TiO2, in Zn2TiO4 spinel ceramics was investigated by analyzing the crystal structure and measuring the dielectric properties. The results of the crystal structure analyses suggested that TiO2 levels of x ≤ 0.33 could be incorporated into the Zn2TiO4 spinel at temperatures of T > 945°C, whereas the solid solubility of titanium in Zn2TiO4 decreased for T < 945°C. When x ≥ 0.28, the Zn2Ti3O8 phase formed in the Zn2TiO4 grain interior while cooling after heat treatment. Measurement of the microwave dielectric properties also supported the conclusion that the solubility limit of titanium in Zn2TiO4 was close to x = 0.33, as determined through analysis of the crystal structure.  相似文献   

19.
The sintering and electrical characteristics of La-modified Na1/2Bi1/2TiO3 (NBT) was investigated from a defect structure viewpoint. To reveal the role of cation vacancies, two series of ceramics, with different cation vacancies, were processed to compensate the excess positive charge of lanthanum ions. In a region of complete solid solution, the grain size of NBLT-B {[(Na0.5Bi0.5)1− x La x ]Ti1−0.25 x O3} was smaller than that of NBLT-A {[(Na0.5Bi0.5)1−1.5 x La x ]TiO3} and densification was enhanced more effectively in NBLT-B. With the aid of thermoelectric power, electric conductivity, and electrotransport measurements, it was found that different sintering behaviors between NBLT-A and NBLT-B specimens were related to the change in the type of cation vacancies present and that lanthanum ion–cation vacancy pairs played an important role in reducing the grain growth and enhancing the densification process.  相似文献   

20.
The incorporation of Er3+ into BaTiO3 ceramics was investigated on samples containing 0.25, 0.5, 1, 2, 8, and 10 at.% of dopant, after sintering at 1350–1550°C in air. For Er3+ concentrations ≤1 at.%, dense and large-grained ceramics with low room-temperature resistivity (102–103Ω·cm) were obtained. The observed properties are largely independent of stoichiometry. Simultaneous substitution of Er3+ at both cation sites, with higher preference for the Ba site, is proposed. The behavior of heavily doped ceramics depends on stoichiometry. When Ba/Ti < 1, the electrical properties change from slightly semiconducting to insulating as Er concentration increases from 2 to 8 at.%. The ceramics have tetragonal perovskite structure and contain a large amount of Er2Ti2O7 pyrochlore phase. On the other hand, when Ba/Ti > 1, the ceramics are insulating, fine-grained, and single phase. In this case, incorporation of Er3+ predominantly occurs at the Ti site, with oxygen vacancy compensation. Incorporation is accompanied by a significant reduction of tetragonality and by expansion of the unit cell. The different results indicate that Er3+ solubility at the Ba site does not exceed 1 at.%, whereas solubility at the Ti site is at least 10 at.%. However, the incorporation of Er3+ and the resulting properties are also strongly affected by sintering conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号