首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815.  相似文献   

2.
Biopolymers are gaining increasing interest because of decline of mineral oil reserves, increasing waste problem, and increasing consciousness of society for environmental problems. However, competitiveness of biopolymers compared with conventional plastics is still limited due to partly insufficient properties and high prices. This study investigates the influence of blending of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) with poly(butylene adipate‐co‐terephthalate) (PBAT) as well as the influence of addition of functionalized montmorillonite (OMMT) to the blends on morphology and thermal behavior. Dispersion state and morphology of the nanocomposites are studied by X‐ray diffraction as well as scanning electron microscopy. Thermal stability is studied by thermogravimetric analysis and crystallization behavior is studied by differential scanning calorimetry and polarized optical microscopy. With respect to the morphology for the blends it can be seen that the immiscible biopolymers PHBV and PBAT are distributed in interlocking zones. There is a good dispersion and homogeneous distribution of OMMT within the biopolymer blends. The addition of 50% or more PBAT to PHBV as well as the insertion of OMMT enhances thermal stability of PHBV. In the blends, the addition of PBAT retards crystallization of PHBV. The OMMT acts as nucleating agent leading in total to more but less perfect crystals in the blends, and the crystallization slows further due to constraint in the movement of polymer chains. These results contribute to the understanding of the structure–properties relationship of bionanocomposite materials for packaging applications. POLYM. COMPOS., 36:2051–2058, 2015. © 2014 Society of Plastics Engineer  相似文献   

3.
Electrospinning of biodegradable poly(3‐hydroxybutyrate) (PHB)/magnetite and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)/magnetite composites in 2,2,2‐trifluoroethanol (TFE) and chloroform are investigated to develop nonwoven nanofibrous structure. Ultrafine PHB/magnetite fibers are obtained and the resulting fiber diameters are in the range of 690–710 nm and 8.0–8.4 µm for the polymer dissolved in TFE and chloroform. The surface of PHB composites fiber fabricated in chloroform contains porous structures, which are not observed for the sample of PHB composites fiber dissolved in TFE. The fiber diameters for PHBV5/magnetite composites are in the range of 500–540 nm and 2.3–2.5 µm, depending on the use of TFE and chloroform. The average diameters of PHBV5/magnetite composite fibers are smaller than those of PHB/magnetite composites fiber. All electrospun PHB/magnetite and composite fibers are superparamagnetic. The degradation behaviors of PHB/magnetite and PHBV5/magnetite composite fibers were investigated using Caldimonas manganoxidans. For the fabricated composite fibers, it is found that the degradation rate increased with the increasing loading of magnetite nanoparticles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41070.  相似文献   

4.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The crystallization behavior of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) induced by two kinds of nucleating agents, boron nitride (BN) and talc, was investigated by differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both BN and talc have good nucleating ability in the crystallization of PHB and PHBV. From these results, combined with molecular weight measurement by gel permeation chromatography, the mechanism of nucleation by BN and talc in the crystallization of PHB and PHBV has been proposed. BN acts as a nucleating agent itself and initiates nucleation in the crystallization of PHB and PHBV. Talc acts in a different way. It reacts as a chemical reagent with the molten chains of PHB/PHBV, while the reaction product acts as the true nucleating agent, which lowers the crystallization barriers of PHB and PHBV. 1H NMR spectroscopy provides evidence for the reaction between PHB and talc and supports the proposed nucleation mechanism. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
The crystallization kinetics and spherulitic morphology of six‐armed poly(L‐lactic acid) (6a‐PLLA)/poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) crystalline/crystalline partially miscible blends were investigated with differential scanning calorimetry and polarized optical microscopy in this study. Avrami analysis was used to describe the isothermal crystallization process of the neat polymers and their blends. The results suggest that blending had a complex influence on the crystallization rate of the two components during the isothermal crystallization process. Also, the crystallization mechanism of these blends was different from that of the neat polymers. The melting behavior of these blends was also studied after crystallization at various crystallization temperatures. The crystallization of PHBV at 125°C was difficult, so no melting peaks were found. However, it was interesting to find a weak melting peak, which arose from the PHBV component for the 20/80 6a‐PLLA/PHBV blend after crystallization at 125°C, and it is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42548.  相似文献   

7.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013  相似文献   

8.
A poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB)‐degrading strain, Agrobacterium sp. DSGZ, was isolated from sewage by poly(3‐hydroxybutyrate) (PHB) mineral agar plates. A novel P3/4HB depolymerase with a molecular weight of 34 kDa was purified through a novel single‐step affinity chromatography method from the culture supernatant of the strain by using P3/4HB powder as a substrate. The purified depolymerase showed optimum activity at pH 7.0 and 50°C, and was stable at the pH range of 6.0 to 9.0 and temperature below 50°C. Enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetic acid (EDTA), hydrophobic reagents, and some metal ions. The depolymerase degraded poly(3‐hydroxybutyrate) (PHB), poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV), P3/4HB, and polycaprolactone (PCL), instead of polylactic acid (PLA) or poly(butylene succinate) (PBS). Meanwhile, the depolymerase showed high hydrolytic activity against short‐chain length esters, such as butyrate acid ester and caprylic acid ester. The main degradation products of the depolymerase were identified as hydroxybutyrate monomers and dimers, and the monomers were identified as 3‐hydroxybutyrate (3HB) monomers and 4‐hydroxybutyrate (4HB) monomers. The preparation procedure, crystallinity, and 4HB composition of the P3/4HB copolymer showed evident effect on degradation behavior, and change in crystallinity was the main factor affecting degradation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42805.  相似文献   

9.
Effects of cyanuric acid (CA) on nonisothermal and isothermal crystallization, melting behavior, and spherulitic morphology of bacterial copolyesters of poly(3‐hydroxybutyrate), i.e., poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBH), have been investigated. CA has excellent acceleration effectiveness on the melt crystallization of bacterial PHB, PHBV, and PHBH, better than the nucleating agents reported in the literatures, such as boron nitride, uracil, and orotic acid. PHBV and PHBH do not crystallize upon cooling from the melt at 10°C/min, while they are able to complete crystallization under the same conditions with an addition of 1% CA, with a presence of sharp crystallization exotherm at 75–95°C. Isothermal crystallization kinetics of neat and CA‐containing PHBV and PHBH were analyzed by Avrami model. Crystallization half‐times (t1/2) of PHBV and PHBH decrease dramatically with an addition of CA. The melting behavior of isothermally melt‐crystallized PHBV and PHBH is almost not influenced by CA. Spherulitic numbers of PHBV and PHBH increase and the spherulite sizes reduce with an incorporation of CA. Nucleation densities of PHBV and PHBH increase by 3–4 orders of magnitude with a presence of 1% CA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
11.
Expanding the applications of poly(butylene succinate) (PBS) in processing fields requiring high melt strength, PBS/solid epoxy (SE)/carboxyl‐ended polyester (CP) blends with high melt viscosity were fabricated by the in‐situ crosslinking reaction using SE and CP. The influence of SE/CP had been studied in terms of the rheological property, crystallization behavior, and mechanical property of PBS. The results showed that the melt viscosity of PBS could be enhanced significantly by three orders of magnitude, when the loading ratio of SE to CP was over 15/15. Furthermore, it had also been found that SE/CP component had positive impact on the mechanical properties of PBS, inclusive of reduction of brittleness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42193.  相似文献   

12.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)/phenolic blends are new miscible crystalline/amorphous polymer blends prepared via solution casting method in this work, as evidenced by the single composition dependent glass transition temperature. The measured Tgs can be well fitted by the Kwei equation with a q value of 13.6 for the PHBV/phenolic blends, indicating that the interaction between the two components is strong. The negative polymer–polymer interaction parameter, obtained from the melting depression of PHBV using the Nishi‐Wang equation, indicating the thermal miscibility of PHBV and phenolic. The spherulitic morphology and crystal structure of PHBV/phenolic blends were studied with polar optical microscopy and wide angle X‐ray diffraction compared with those of neat PHBV. It is found that the growth rates of PHBV in the blends are lower than that in neat PHBV at a given crystallization temperature, and the crystal structure of PHBV is not modified by the presence of phenolic in the PHBV/phenolic blends, but the crystallinity decrease with the increasing of phenolic. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Two different methodologies (reactive blending and mechanical blending) for preparing blends of poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate) (PHBV) and poly(propylene carbonate) (PPC) were used. The miscibility, chemical structure, thermal behavior, crystallinity, morphology, and mechanical properties of the blends were investigated with Fourier transform infrared spectroscopy, differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy, and tensile tests. A certain extent of hydrogen‐bonding interactions between PHBV and PPC took place in the blends. The graft copolymerization was confirmed in the reactive system. The incorporation of PPC hampered the crystallization process of PHBV and evidently altered the morphology, and the effect was enhanced in the reactive blend. The mechanical properties of PHBV could be changed by 1–2 orders of magnitude by blending modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1427–1436, 2005  相似文献   

14.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

15.
The Polylactide (PLA)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) blends with four different weight ratios were prepared by melt mixing. PLA and PHBV in PLA/PHBV blends were immiscible while the weak interaction between PLA and PHBV existed. The PHBV domains below 2 μm were dispersed in PLA matrix uniformly. The addition of PHBV made the crystallization of PLA easier due to PHBV acting as nucleating agent. PLA spherulites in PLA/PHBV blends presented various banded structures. In addition, the crystallinity of neat PLA was lower than those of PLA/PHBV blends. With the increase of PHBV content in PLA/PHBV blends, the crystallinity of PLA/PHBV blends increased. PHBV could enhance significantly the toughness of PLA. However, with the increase of PHBV content, the yield stress (σy), tensile modulus (E), and the yield strain (εy) of PLA/PHBV blends decreased gradually. In addition, incorporation of PHBV to PLA caused a transformation from an optical transparent to an opaque system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42689.  相似文献   

16.
Nonisothermal crystallization behaviors of both poly(butylene succinate) (PBS) and poly(ethylene glycol) (PEG) segments within PBS‐PEG (PBSEG) multiblock copolymers were investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization kinetics of both PBS and PEG segments were analyzed by Avrami, Ozawa, and Mo methods. The results showed that both of Avrami and Mo methods were successful to describe the nonisothermal crystallization kinetics of PBS and PEG segments. The results of crystallization kinetics indicated that the crystallization rate of PBS segment decreased with PBS segment content and/or LPBS, while that of PEG segment decreased with Mn,PEG or FPEG. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40940.  相似文献   

17.
Nanofibers and films of poly(3‐hydroxybutyrate) (PHB)/nylon 3 [poly(β‐alanine) (N3)], PHB/poly(α‐methyl‐β‐alanine) (2mN3), and PHB/poly(β‐methyl‐β‐alanine) (3mN3) blends were prepared by electrospinning and film‐casting techniques, respectively. The miscibility of the blends was studied by Fourier transform infrared spectrometry, differential scanning calorimetry, thermogravimetric analysis, and X‐ray diffraction (XRD). The electrospinnability of the blends was studied by scanning electron microscopy. Some characteristic IR absorption bands of the components in the blends shifted gradually with changes in the compositions. The melting temperature and decomposition temperature of PHB decreased gradually with increasing fractions of N3, 2mN3, and 3mN3. The XRD spectra of all of the blends exhibited peaks with lower intensities compared to those of the neat species. The suppression of PHB crystallinity in the blends after blending was attributed to the disruption of its crystal lattice and the prevention of recrystallization of each component by means of other components and segmental interactions between the components in the amorphous phase. Thermal, spectroscopic, and optical analyses of the polymer blends revealed that the polymers were miscible with good compatibility, and this could have improved the scaffold properties of PHB. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40484.  相似文献   

18.
Formation of porous films from poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) using the breath figures (BF) method was investigated by evaporating solutions in chloroform in humid air and examining film structure using optical and scanning electron microscopy (SEM). BF films were successfully fabricated from PHB (Mw = 486,000 g/mol) and displayed hexagonal arrays of pores, which varied in diameter (D = 7–2 μm) with solution concentrations (0.5–2.00%). SEM of fractured films also showed subsurface closed nano‐pores (D = 500–700 nm). BF films cast from PHBV (5% HV) formed arrays with smaller pores and apparent surface defects. Differential scanning calorimetry showed that porous PHB and PHBV films produced using the BF method were more crystalline than nonporous solvent cast films of PHB and PHBV. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
The kinetics of the isothermal crystallization process from the melt of pure poly(butylene succinate)‐co‐(butylene carbonate) (PBS‐co‐BC) and its blends with cellulose acetate butylate (CAB) (10–30 wt%) was studied by differential scanning calorimetry (DSC) and the well‐known Avrami equation. In the blends, the overall crystallization rate of PBS‐co‐BC became slower with increasing CAB content. The equilibrium melting temperature ( ) of PBS‐co‐BC decreased with increasing CAB content, which was similar to that with other miscible crystalline/amorphous polymer blends. The slower crystallization kinetics of PBS‐co‐BC in the blends was explicable in terms of a diluent effect of the CAB component. By application of Turnbull–Fisher kinetic theory for polymer–diluent blend systems, the surface free energy (σe) of pure PBS‐co‐BC and of the blends was obtained, indicating that the blend with CAB resulted in a decrease in the surface free energy of folding of PBS‐co‐BC lamellar crystals. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
This article investigated the crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate)(PBS) and its segmented copolyester poly(butylene succinate)‐block‐poly(propylene glycol)(PBSP) by means of differential scanning calorimetry, polarized light microscopy, and wide angle X‐ray diffraction. Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the Avrami equation modified by Jeziorny, and the model combining Avrami equation and Ozawa equation were employed. The results showed that the introduction of poly(propylene glycol) soft segment led to suppression of crystallization of PBS hard segment. The melting behavior of the isothermally and nonisothermally crystallized samples was also studied. Results showed that the isothermally crystallized samples exhibited two melting endotherms, whereas only one melting endotherm was shown after nonisothermal crystallization. The spherulitic morphology of PBSP and wide angle X‐ray diffraction showed that the polyether segments were excluded from the crystals and resided in between crystalline PBS lamellae and mixed with amorphous PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号