首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of the parasitoidCotesia rubecula to differently damaged cabbages were recorded during a series of choice tests. To determine if flyingC. rubecula can discriminate differences in the blend of volatiles emitted by cabbages damaged by different causes and how plant volatiles released from a distant source affect the searching behavior ofC. rubecula once searching on a plant, wasps were presented with a choice of plants located one behind the other and separated by a distance of 15 cm. The sources of damage were: cabbage damaged by the host (Pieris rapae), by a nonhost lepidopteran herbivore (Plutella xylostella), by a nonhost, noninsect herbivore (snail), and by mechanical means. The results showed that the site of first landing and the time spent searching on the leaves was influenced by the type of damage inflicted on plants. Wasps preferred to land on cabbages damaged by host and nonhost species of Lepidoptera over those damaged by snails and mechanical means. No preference was observed for first landing between cabbages damaged by the two species of Lepidoptera or between cabbages damaged by snails and mechanical means. Cabbage damaged byP. rapae was searched most intensively, followed by cabbage damaged byP. xylostella, cabbage damaged by snails, and cabbage damaged by mechanical means.C. rubecula differentiates between the volatile blends emitted by differently damaged cabbages, and it is attracted to volatiles related to recent lepidopteran damage. Wasps searched longer on freshly damaged than on leaves with older damage.  相似文献   

2.
The role of airborne infochemicals in host selection by the parasitoidCotesia rubecula (Marshal) (Hymenoptera: Braconidae) was examined in a wind tunnel. To elucidate the role of volatile chemicals in attractingC. rubecula to cabbage infested by the host [Pieris rapae L. (Lepidoptera: Pieridae)], the potential sources of volatiles related toP. rapae infestation on cabbage were tested individually. The responses of females to nonhost plant species, bean and geranium, as well as to frass of a nonhost lepidopteran were also examined.C. rubecula was attracted to cabbage previously infested byP. rapae and to frass and regurgitate ofP. rapae. No attraction was observed to larvae ofP. rapae alone. Females were also attracted to mechanically damaged cabbage, cabbage previously infested byPlutella xylostella L. (Lepidoptera: Plutellidae) (a nonhost lepidopteran herbivore), and cabbage previously infested by snails (a nonhost, noninsect herbivore). Intact cabbage, bean, and geranium plants elicited no attraction. A low frequency of attraction was observed to mechanically damaged bean and geranium. Attraction was also observed to frass ofP. xylostella. Volatiles from cabbage related to damage, and volatiles from frass and regurgitate of the host seem to play an important role in guidingC. rubecula to plants infested by its host.  相似文献   

3.
Ontogenetic variability in chemical plant defenses against herbivores is a common phenomenon, but the effects of this variability on herbivore–plant interactions are little understood. In a previous study on lima bean (Phaseolus lunatus), we found a trade-off between cyanogenesis, a direct defense, and the release of herbivore-induced volatile organic compounds (VOCs; mainly functioning as an indirect defense). Moreover, the expression of these two defenses could change during plant ontogeny. The present study aimed at elucidating whether such ontogenetic changes in plant defense can affect herbivore–plant interactions. We quantified feeding rates of a natural insect herbivore, the Mexican bean beetle (Epilachna varivestis), on primary and secondary leaves of individual lima bean plants. These insects strongly preferred low cyanogenic primary leaves over high cyanogenic secondary leaves. Although weakly defended by cyanogenesis, lima beans’ primary leaves showed protein concentrations and photosynthetic activities that did not differ significantly from secondary leaves at the time of analysis. Based on our findings, we suggest that lima beans’ long-lived primary leaves function as efficient source organs, even beyond the stage of seedlings. This hypothesis may explain why primary leaves express a strong indirect defense by the release of herbivore induced VOCs.  相似文献   

4.
Plants that are infested by herbivores emit volatile cues that can be used by the natural enemies of the herbivores in their search for hosts. Based on results from behavioral studies, we investigated to what extent intact and herbivore-infested plant species and varieties from the food plant range of Pieris herbivore species differ in the composition of the volatile blends. Parasitoids of Pieris species, Cotesia glomerata and C. rubecula, show differential responses towards various herbivore-infested food plants, whereas differences in responses to plants infested by other herbivore species were less clear. Chemical analysis of the headspace samples of red cabbage, white cabbage, and nasturtium plants that were infested by P. brassicae or P. rapae larvae, or that were intact, yielded 88 compounds including alcohols, ketones, aldehydes, esters, nitriles, terpenoids, sulfides, (iso)thiocyanates, carboxylic acids, and others. The analysis revealed that herbivore-infested plants emit the largest number of compounds in the highest amounts. The plant species affected the volatile blend more than did the herbivore species, and differences between plant varieties were less pronounced than differences between plant species. Differences in headspace composition between plants infested by P. brassicae or P. rapae were mainly of a quantitative nature. Herbivore-infested nasturtium differed considerably from the cabbage varieties in a qualitative way. Headspace compositions of red and white cabbage varieties were comparable to that of the food plant Brussels sprouts (Brassica oleracea gemmifera cv. Titurel) as determined in earlier studies in our laboratory. With respect to plant response to herbivory, nasturtium differed considerably from the cabbage varieties analyzed so far and shows resemblance with Lima bean, cucumber, and corn. These plant species produce a greater quantity and variety of volatiles under herbivore attack than intact plants. The results of this study are discussed in relation to behavioral observations on C. glomerata and C. rubecula.  相似文献   

5.
Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved.  相似文献   

6.
Sinapis alba is less susceptible to damage by insect pests than Brassica napus. We investigated the composition and distribution of glucosinolates in different plant parts in three populations of S. alba; two populations selected for low-seed-glucosinolate content and one commercial cultivar. We have assessed the susceptibility of low-seed-glucosinolate content populations of S. alba to four insect pests, a flea beetle, a pollen beetle, and two species of aphids. Over 90% of the total glucosinolates in the cotyledons of the three populations of S. alba consisted of sinalbin. There was no difference in feeding damage by flea beetles on different S. alba populations at the cotyledon stage, nor was there a difference in sinalbin concentration of cotyledons. Total glucosinolate levels were highest in younger plant tissues. Sinalbin declined as a proportion of total glucosinolate content in later growth stages, especially in the low breeding lines. Reproduction by aphids was the same on all three populations despite differences in sinalbin content of the S. alba leaves at the growth stage tested. The specialist aphid, Brevicoryne brassicae, was found mainly on young tissues, while the generalist aphid, Myzus persicae, was found predominantly on older plant parts. There was no difference in oviposition by pollen beetles between the S. alba populations, despite the fact that on one population total glucosinolate concentration and the proportion of sinalbin found in the buds were much lower than on the other two populations.  相似文献   

7.
Desert locusts (Schistocerca gregaria) occasionally feed on Schouwia purpurea, a plant that contains tenfold higher levels of glucosinolates than most other Brassicaceae. Whereas this unusually high level of glucosinolates is expected to be toxic and/or deterrent to most insects, locusts feed on the plant with no apparent ill effects. In this paper, we demonstrate that the desert locust, like larvae of the diamondback moth (Plutella xylostella), possesses a glucosinolate sulfatase in the gut that hydrolyzes glucosinolates to their corresponding desulfonated forms. These are no longer susceptible to cleavage by myrosinase, thus eliminating the formation of toxic glucosinolate hydrolysis products. Sulfatase is found throughout the desert locust gut and can catalyze the hydrolysis of all of the glucosinolates present in S. purpurea. The enzyme was detected in all larval stages of locusts as well as in both male and female adults feeding on this plant species. Glucosinolate sulfatase activity is induced tenfold when locusts are fed S. purpurea after being maintained on a glucosinolate-free diet, and activity declines when glucosinolates are removed from the locust diet. A detoxification system that is sensitive to the dietary levels of a plant toxin may minimize the physiological costs of toxin processing, especially for a generalist insect herbivore that encounters large variations in plant defense metabolites while feeding on different species.  相似文献   

8.
Brassicaceae plants are nonmycorrhizal. They were found to inhibit VA mycorrhizal infection in their host plants. We tested if they can influence growth of ectomycorrhizal (ECM) fungi. When roots and leaves of Brassicaceae plants and ECM fungi were cultured together in the same petri dishes, the root exudates of turnip (Brassica rapa), swede (B. napobrassica), cabbage (B. oleracea, var. capitata), broccoli (B. oleracea, var. italica Plenck), kohlrobi (B. caulorapa Pasq.), mustard (B. juncea), radish (Raphanus sativus), and choy (B. napus) significantly stimulated hyphal growth of the ectomycorrhizal fungus Paxillus involutus. Root exudates of turnip and cabbage stimulated hyphal growth of Pisolithus tinctorius and two isolates of P. involutus. Colony area of P. involutus was increased by 452 and 414%, respectively, in the presence of turnip and cabbage germinants. Root exudates of turnip increased the biomass of P. involutus and P. tinctorius by 256 and 122% and cabbage by 220 and 82%, respectively. The stimulatory effect was not affected by autoclaving the root exudates. Root exudates had chemical reactions with glutathione and lysine, which resulted in a reduction of the growth stimulation of ECM fungi. Myrosinase enhanced further the stimulatory effects of turnip on the ECM colony diameter growth by 23%. Autoclaved roots and leaves of turnip did not stimulate fungal growth, but mechanically ground roots and leaves of turnip stimulated growth of involutus by 147 and 135%, respectively. After desulfuration with aryl sulphatase, the glucosinolates (GLSs) in turnip roots and leaves were identified by HPLC. The major ones were indole GLSs. Prominent compounds identified were 1-methoxy-3-indolymethyl GLS and 4-methoxy-3-indolymethyl GLS. The finding provides an opportunity to field test the use of Brassicaceae plants in enhancing ectomycorrhizal formation in conifers by interplanting conifers with Brassicaceae plants in forest tree nursery and agroforestry systems.  相似文献   

9.
Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F 2 hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F 2 hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant–insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In nature, plants defend themselves by production of allelochemicals that are toxic to herbivores. There may be considerable genetic variation in the expression of chemical defenses because of various selection pressures. In this study, we examined the development of the small cabbage butterfly, Pieris rapae, and its gregarious pupal ectoparasitoid, Pteromalus puparum, when reared on three wild populations (Kimmeridge, Old Harry, Winspit) of cabbage, Brassica oleracea, and a Brussels sprout cultivar. Wild plant populations were obtained from seeds of plants that grow naturally along the south coast of Dorset, England. Significant differences in concentrations of allelochemicals (glucosinolates) were found in leaves of plants damaged by P. rapae. Total glucosinolate concentrations in Winspit plants, the population with the highest total glucosinolate concentration, were approximately four times higher than in the cultivar, the strain with the lowest total glucosinolate concentration. Pupal mass of P. rapae and adult body mass of Pt. puparum were highest when reared on the cultivar and lowest when developing on Kimmeridge plants, the wild strain with the lowest total glucosinolate concentration. Development of male parasitoids was also more negatively affected than female parasitoids. Our results reveal that plant quality, at least for the development of ‘adapted’ oligophagous herbivores, such as P. rapae, is not based on total glucosinolate content. The only glucosinolate compound that corresponded with the performance of P. rapae was the indole glucosinolate, neoglucobrassicin. Our results show that performance of ectoparasitoids may closely reflect constraints on the development of the host.  相似文献   

11.
The composition of secondary metabolites and the nutritional value of a plant both determine herbivore preference and performance. The genetically determined glucosinolate pattern of Barbarea vulgaris can be dominated by either glucobarbarin (BAR-type) or by gluconasturtiin (NAS-type). Because of the structural differences, these glucosinolates may have different effects on herbivores. We compared the two Barbarea chemotypes with regards to the preference and performance of two lepidopteran herbivores, using Mamestra brassicae as a generalist and Pieris rapae as a specialist. The generalist and specialist herbivores did not prefer either chemotype for oviposition. However, larvae of the generalist M. brassicae preferred to feed and performed best on NAS-type plants. On NAS-type plants, 100% of the M. brassicae larvae survived while growing exponentially, whereas on BAR-type plants, M. brassicae larvae showed little growth and a mortality of 37.5%. In contrast to M. brassicae, the larval preference and performance of the specialist P. rapae was unaffected by plant chemotype. Total levels of glucosinolates, water soluble sugars, and amino acids of B. vulgaris could not explain the poor preference and performance of M. brassicae on BAR-type plants. Our results suggest that difference in glucosinolate chemical structure is responsible for the differential effects of the B. vulgaris chemotypes on the generalist herbivore. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The iridoid glucoside, antirrhinoside, is constitutively distributed throughout Antirrhinum majus L. in a manner consistent with its possible role as an allelochemical, but there is no evidence that it has a defensive function with respect to insect herbivory. To address this question, two generalist herbivores, Lymantria dispar L. (gypsy moth) and Trichoplusia ni Hübner (cabbage looper) were chosen for feeding trials on excised whole leaves of A. majus and in artificial diet assays. In leaf excision feeding trials, fourth instar gypsy moth rejected, without sampling, the leaves of A. majus regardless of what node the leaf was excised from. In contrast, fourth instar cabbage looper readily fed on the excised leaves, and antirrhinoside was not found in their bodies or feces (frass) as determined by thin layer and high-pressure liquid chromatography. In the leaf and diet assays, a second major leaf iridoid in A. majus, antirrhide, was found in both cabbage looper and gypsy moth frass. In diet feeding assays, the growth of gypsy moth and cabbage looper were not inhibited by methanol extracts, iridoid fractions, or pure antirrhinoside at concentrations of 0.6% in diet, but cabbage looper growth was enhanced. At an antirrhinoside concentration of 3.3% in diet, gypsy moth growth was reduced, whereas cabbage looper growth again increased significantly relative to the control. It is likely that antirrhinoside functions as defense against herbivory for one generalist insect herbivore but also, at low concentrations, enhances the growth of another.  相似文献   

13.
Container grownEncelia farinosa were exposed to three 3-hr episodes of acidic fog (pH 2.5) typical of events in southern California. Adults and larvae of the specialist leaf-feeding herbivore,Trirhabda geminata, preferred to feed on the acidic-treated foliage compared to control fogged (pH 6.3–6.5) foliage. Previous feeding damage on the plants did not affect feeding preference. The acidic-fogged foliage was significantly higher in total nitrogen and soluble protein but not different from control-treated tissue in water content. Stress on native populations of this drought-deciduous shrub caused by atmospheric pollutants may also result in altered feeding ecology of the beetle.  相似文献   

14.
Rhyssomatus lineaticollis is a milkweed specialist whose larvae feed upon pith parenchyma in ramet stems of the common milkweed, Asclepias syriaca. Compared with other specialist insect herbivores on milkweeds, this curculionid beetle is unusual in that it is cryptically colored and does not sequester cardenolides characteristic of milkweed chemical defense. Based upon optimal defense theory, we predicted that pith tissue would be low in defensive compounds and that oviposition into the pith would spatially avoid cardenolides. We rejected this hypothesis because we found that pith tissue has a relatively high cardenolide concentration compared to cortex, epidermis, and leaf tissues. Moreover, we found total plant cardenolide concentration was lower in plants that contained the beetle eggs. Cardenolide concentrations were different among tissues in intact stems without the pith herbivore compared to stems where it was present. Furthermore, the overall polarity of the cardenolides present varied among plant tissues and between plants with and without R. lineaticollis eggs. Although we found lower concentrations of cardenolide in piths where the eggs were present, the cardenolides present in the pith contained more nonpolar forms, indicating that the plant may be responding to herbivory by increasing toxic efficacy of cardenolide defenses while lowering the total concentration. We suggest that preoviposition behavior by female beetles, which includes feeding on new leaves of the plant, is a mechanism by which females manipulate plant chemistry and assess quantitative and qualitative changes in cardenolide chemistry in response to herbivory prior to oviposition.  相似文献   

15.
Through artificial selection, domesticated plants often contain modified levels of primary and secondary metabolites compared to their wild progenitors. It is hypothesized that the changed chemistry of cultivated plants will affect the performance of insects associated with these plants. In this paper, the development of several specialist and generalist herbivores and their endoparasitoids were compared when reared on a wild and cultivated population of cabbage, Brassica oleracea, and a recently established feral Brassica species. Irrespective of insect species or the degree of dietary specialization, herbivores and parasitoids developed most poorly on the wild population. For the specialists, plant population influenced only development time and adult body mass, whereas for the generalists, plant populations also affected egg-to-adult survival. Two parasitoid species, a generalist (Diadegma fenestrale) and a specialist (D. semiclausum), were reared from the same host (Plutella xylostella). Performance of D. semiclausum was closely linked to that of its host, whereas the correlation between survival of D. fenestrale and host performance was less clear. Plants in the Brassicaceae characteristically produce defense-related glucosinolates (GS). Levels of GS in leaves of undamaged plants were significantly higher in plants from the wild population than from the domesticated populations. Moreover, total GS concentrations increased significantly in wild plants after herbivory, but not in domesticated or feral plants. The results of this study reveal that a cabbage cultivar and plants from a wild cabbage population exhibit significant differences in quality in terms of their effects on the growth and development of insect herbivores and their natural enemies. Although cultivated plants have proved to be model systems in agroecology, we argue that some caution should be applied to evolutionary explanations derived from studies on domesticated plants, unless some knowledge exists on the history of the system under investigation.  相似文献   

16.
We tested in the field the hypothesis that the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae, Melitaeinae) lays eggs on leaves of Lonicera implexa (Caprifoliaceae) plants with greater iridoid concentrations. We conducted our investigations in a Mediterranean site by analyzing leaves with and without naturally laid egg clusters. There were no significant differences in iridoid glycoside concentrations between leaves from plants that did not receive eggs and the unused leaves from plants receiving eggs, a fact that would seem to indicate that E. aurinia butterflies do not choose plants for oviposition by their iridoid content. However, the leaves of L. implexa that bore egg clusters had dramatically greater (over 15-fold) concentrations of iridoid glycosides than the directly opposite leaves on the same plant. These huge foliar concentrations of iridoids (15% leaf dry weight) may provide specialist herbivores with compounds that they either sequester for their own defense or use as a means of avoiding competition for food from generalist herbivores. Nevertheless, it may still be possible that these high concentrations are detrimental to the herbivore, even if the herbivore is a specialist feeder on the plant.  相似文献   

17.
Interactions between insects and glucosinolate-containing plant species have been investigated for a long time. Although the glucosinolate–myrosinase system is believed to act as a defense mechanism against generalist herbivores and fungi, several specialist insects use these secondary metabolites for host plant finding and acceptance and can handle them physiologically. However, sequestration of glucosinolates in specialist herbivores has been less well studied. Larvae of the turnip sawfly Athalia rosae feed on several glucosinolate-containing plant species. When larvae are disturbed by antagonists, they release one or more small droplets of hemolymph from their integument. This reflex bleeding is used as a defense mechanism. Specific glucosinolate analysis, by conversion to desulfoglucosinolates and analysis of these by high-performance liquid chromatography coupled to diode array UV spectroscopy and mass spectrometry, revealed that larvae incorporate and concentrate the plant's characteristic glucosinolates from their hosts. Extracts of larvae that were reared on Sinapis alba contained sinalbin, even when the larvae were first starved for 22 hr and, thus, had empty guts. Hemolymph was analyzed from larvae that were reared on either S. alba, Brassica nigra, or Barbarea stricta. Leaves were analyzed from the same plants the larvae had fed on. Sinalbin (from S. alba), sinigrin (B. nigra), or glucobarbarin and glucobrassicin (B. stricta) were present in leaves in concentrations less than 1 mol/g fresh weight, while the same glucosinolates could be detected in the larvae's hemolymph in concentrations between 10 and 31 mol/g fresh weight, except that glucobrassicin was present only as a trace. In larval feces, only trace amounts of glucosinolates (sinalbin and sinigrin) could be detected. The glucosinolates were likewise found in freshly emerged adults, showing that the sequestered phytochemicals were transferred through the pupal stage.  相似文献   

18.
We studied the interaction between plants (horsenettle; Solanum carolinense) and herbivorous insects (flea beetles; Epitrix spp., and tobacco hornworm; Manduca sexta) by focusing on three questions: (1) Does variation in nitrogen availability affect leaf chemistry as predicted by the carbon-nutrient balance (CNB) hypothesis? (2) Does variation in plant treatment and leaf chemistry affect insect feeding? (3) Is there an interaction between the insect herbivores that is mediated by variation in leaf chemistry? For three successive years (1998-2001), we grew a set of clones of 10 maternal plants under two nitrogen treatments and two water treatments. For each plant in the summer of 2000, we assayed herbivory by hornworms in both indoor (detached leaf) and outdoor (attached leaf) assays, as well as ambient flea beetle damage. Estimates of leaf material consumed were made via analysis of digitized leaf images. We also assayed leaves for total protein, phenolic, and glycoalkaloid content, and for trypsin inhibitor, polyphenol oxidase, and peroxidase activity. Despite strong effects of nitrogen treatment on growth and reproduction, only total protein responded as predicted by CNB. Leaf phenolic levels were increased by nitrogen treatment, polyphenol oxidase activity was decreased, and other leaf parameters were unaffected. Neither hornworm nor flea beetle herbivory could be related to plant treatment or genotype or to variation in any of the six leaf chemical parameters. A negative relationship between flea beetle and hornworm herbivory was found, but was not apparently mediated by any of the measured leaf chemicals. Because leaf resistance was maintained in low nitrogen plants at the apparent expense of growth and reproduction, our results support the concept of a fitness cost of defense, as predicted by the optimal defense hypothesis.  相似文献   

19.
We experimentally reanalyzed the classic interaction between Pieris rapae, a specialist lepidopteran herbivore, and isothiocyanates (mustard oils) that are characteristic phytochemicals of the Brassicaceae. Previous investigations have suggested that P. rapae is unaffected by isothiocyanates. Using whole plants, root extracts, and a microencapsulated formulation of allyl isothiocyanate, we now show that isothiocyanates reduce herbivore survival and growth, and increase development time, each in a dose-dependent manner. Neither the substrate allyl glucosinolate, nor myrosinase, the enzyme that results in the breakdown of glucosinolates, negatively affected P. rapae. Thus, we present strong evidence for a role for isothiocyanates in plant resistance against the specialist herbivore P. rapae.  相似文献   

20.
The effects of plant competition and herbivory on glucosinolate concentrations in cabbage root and foliage were investigated in a cabbage-red clover intercropping system. Cabbage plants were grown under different competitive pressures and with varying degrees of attack by root-feeding Delia floralis larvae. Glucosinolate concentrations in cabbage were affected both by intercropping and by D. floralis density. Glucosinolate concentrations in foliage generally decreased as a response to intercropping, while the responses to insect root damage of individual glucosinolates were weaker. Root glucosinolates responded more strongly to both intercropping and egg density. Total root glucosinolate concentration decreased with clover density, but only at high egg densities. Increased egg density led to opposite reactions by the indole and aliphatic glucosinolates in roots. The responses of individual root glucosinolates to competition and root damage were complex and, on occasion, nonlinear. Reduced concentrations of several glucosinolates and the tendency towards a decrease in total concentration in cabbage foliage caused by intercropping and larval damage suggest that competing plants or plants with root herbivory do not allocate the same resources as unchallenged plants towards sustaining levels of leaf defensive compounds. This could also be true for root glucosinolate concentrations at high egg densities. In addition, the results suggest that changes occurring within a structural group of glucosinolates may be influenced by changes in a single compound, e.g., glucobrassicin (indol-3-ylmethyl) in foliage or sinigrin (2-propenyl) in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号