首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The coefficient of variation (CV) is used in process monitoring when the process mean and standard deviation are proportional to each other. In this work, a side-sensitive modified group runs CV (SSMGR CV) chart is proposed for monitoring the process CV. The run length performance of the SSMGR CV chart is compared to those of the existing CV charts in terms of the average and standard deviation of the run length criteria. The SSMGR CV chart is found to outperform the existing CV charts. In addition, the run length performance of the SSMGR CV chart is also evaluated in the presence of measurement errors, as these errors are not only unavoidable in practice but they also affect the sensitivity of a control chart in detecting an out-of-control situation. The results obtained show that the accuracy and precision errors affect the performance of the SSMGR CV chart in detecting an out-of-control situation.  相似文献   

3.
The conventional cumulative sum (CUSUM) chart is usually designed based on a known shift size. In usual practice, shift size is often unknown and can be assumed to vary within an interval. With such a range of shift size, the dual CUSUM (DCUSUM) chart provides more sensitivity than the CUSUM chart. In this paper, we propose dual Crosier CUSUM (DCCUSUM) charts with and without fast initial response features to efficiently monitor the infrequent changes in the mean of a normally distributed process. Monte Carlo simulations are used to compute the run length characteristics of one‐sided and two‐sided DCCUSUM charts. These run length characteristics are compared with those of the CUSUM, Crosier CUSUM, Shewhart‐CUSUM, and DCUSUM charts in terms of the integral relative average run length. It turns out that the proposed chart shows better performance when detecting a range of mean shift sizes. A real dataset is considered to illustrate the implementation of existing and proposed charts.  相似文献   

4.
Adaptive cumulative sum (ACUSUM) charts, which adjust the reference value dynamically based on estimated shift size, provide good performance in detecting a range of mean shifts. However, when the range is wide, ACUSUM may not perform well for small shifts over the range. An adaptive runs rule, which is motivated by the concept of supplementary runs rule, is proposed, in order to make control charts more sensitive to small mean shifts. The adaptive runs rule assigns scores to consecutive runs based on the estimated shift size of the mean. The ACUSUM chart is supplemented with the adaptive runs rule to enhance its sensitivity in detecting small mean shifts. The average run length performance of the ACUSUM chart with the adaptive runs rule is compared with those of cumulative sum and variants of adaptive charts including ACUSUM. The experimental results reveal that the ACUSUM chart with the adaptive runs rule achieves superior detection performance over a wide range of mean shifts.  相似文献   

5.
A progressive average chart usually triggers initial out-of-control (OC) signals more simply and quickly than other memory-type charts . In this paper, two progressive average control procedures are proposed for monitoring the coefficient of variation (CV) of a normally distributed process variable, namely, the progressive CV (PCV) and progressive resetting CV (PRCV) control charts , respectively. The implementation of the proposed charts is presented, and the necessary design parameters are provided. Through extensive numerical simulations, it is shown that the proposed PCV and PRCV charts outperform several existing control charts to detect the initial OC signals, especially for the small and moderate CV shifts, under each combination of the shift size, the sample size, and the in-control target value of the CV. In addition, the application of the proposed control charts is illustrated by a detection example for a spinning process.  相似文献   

6.
To ensure high quality standards of a process, the application of control charts to monitor process performance has become a regular routine. Multivariate charts are a preferred choice in the presence of more than one process variable. In this article, we proposed a set of bivariate exponentially weighted moving average (EWMA) charts for monitoring the process dispersion. These charts are formulated based on a variety of dispersion statistics considering normal and non-normal bivariate parent distributions. The performance of the different bivariate EWMA dispersion charts is evaluated and compared using the average run length and extra quadratic loss criteria. For the bivariate normal process, the comparisons revealed that the EWMA chart based on the maximum standard deviation (SMAXE) was the most efficient chart when the shift occurred in one quality variable. It also performed well when the sample size is small and the shift occurred in both quality variables. The EWMA chart based on the maximum average absolute deviation from median (MDMAXE) performed better than the other charts in most situations when the shift occurred in the covariance matrix for the bivariate non-normal processes. An illustrative example is also presented to show the working of the charts.  相似文献   

7.
The nonparametric (distribution-free) control charts are robust alternatives to the conventional parametric control charts when the form of underlying process distribution is unknown or complicated. In this paper, we consider two new nonparametric control charts based on the Hogg–Fisher–Randle (HFR) statistic and the Savage rank statistic. These are popular statistics for testing location shifts, especially in right-skewed densities. Nevertheless, the control charts based on these statistics are not studied in quality control literature. In the current context, we study phase-II Shewhart-type charts based on the HFR and Savage statistics. We compare these charts with the Wilcoxon rank-sum chart in terms of false alarm rate, out-of-control average run-length and other run length properties. Implementation procedures and some illustrations of these charts are also provided. Numerical results based on Monte Carlo analysis show that the new charts are superior to the Wilcoxon rank-sum chart for a class of non-normal distributions in detecting location shift. New charts also provide better control over false alarm when reference sample size is small.  相似文献   

8.
Short production runs are common in enterprises that require a high degree of flexibility and variety in manufacturing processes. To date, past research on short production runs has little focus on the multivariate control charts. In view of this, fixed sample size (FSS) and variable sample size (VSS) Hotelling's T2 charts are designed to monitor the process mean when the production horizon is finite. Optimal parameters to minimize the out‐of‐control (1) truncated average run length (TARL) and (2) expected TARL (ETARL) are provided such that the in‐control TARL is equal to the number of inspections (say I). The numerical study considers the run length performances of the FSS and VSS T2 short‐run charts for both known and unknown shift sizes. The VSS T2 short‐run chart performs well in swiftly detecting various mean shifts in comparison with the FSS T2 short‐run chart. Additionally, the VSS T2 short‐run chart is superior to the FSS T2 short‐run chart, in terms of the truncated standard deviation of the run length, expected truncated standard deviation of the run length, probability that the chart signals an alarm within the I inspections, ie, P(I) and expected P(I). A case study on the impurity profile of a crystalline drug substance illustrates the implementation of the VSS T2 short‐run chart.  相似文献   

9.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The coefficient of variation (CV) of a population is defined as the ratio of the population standard deviation to the population mean, which can be regarded as a measure of stability or uncertainty and can also indicate the relative dispersion of data to the population mean. This paper proposes a new exponentially weighted moving average chart for monitoring CV, which is constructed by truncating those negative normalized observations to 0 in the traditional exponentially weighted moving average CV statistics. The implementation and optimization procedures of the proposed chart are presented. The new chart is compared with some existing CV charts by means of average run length, and the comparison results show that the new chart outperforms other charts in most cases. Two examples illustrate the use of this chart on real data gathered from a metal sintering process and from a die casting hot chamber process.  相似文献   

11.
In this paper we investigate the use of the average unit run length (AURL) as an important measure of the effectiveness of various quality control charting schemes. In particular we focus on its appropriateness for normally distributed processes that tend to produce units (or measurements) at slow rates. In our investigations with the standard Shewhart X? and R charts, as well as the CUSUM chart, AURL shows that a sample size of n=1 can yield the fastest means of detecting shifts.  相似文献   

12.
A multivariate Shewhart and a multivariate exponentially weighted moving average control charts are types of multivariate control charts for monitoring the mean vector. For those control charts, a multivariate normal distribution is an important assumption that is used to describe a behavior of a set of quality characteristics of interest. This research explores the sensitivity of average run lengths and standard deviation of run lengths for the multivariate Shewhart and the multivariate exponentially weighted moving average control charts when the normality assumption is incorrect.  相似文献   

13.
Monitoring disturbances in process dispersion using control chart is mostly based on the assumption that the quality characteristic follows normal distribution, which is not the case in many real-life situations. This paper proposes a set of new dispersion charts based on the homogeneously weighted moving average (HWMA) scheme, for efficient detection of shifts in process standard deviation (σ). These charts are based on a variety of σ estimators and are investigated for normal as well as heavy tailed symmetric and skewed distributions. The shift detection ability of the charts is evaluated using different run length characteristics, such as average run length (ARL), extra quadratic loss (EQL), and relative ARL measures. The performance of the proposed HWMA control charts is also compared with the existing EWMA dispersion charts, using different design parameters. Furthermore, an illustrative example is presented to monitor the vapor pressure in a distillation process.  相似文献   

14.
Nonparametric control charts are widely used when the parametric distribution of the quality characteristic of interest is questionable. In this study, we proposed a nonparametric progressive mean control chart, namely the nonparametric progressive mean chart, for efficient detection of disturbances in process location or target. The proposed chart is compared with the recently proposed nonparametric exponentially weighted moving average and nonparametric cumulative sum charts using different run length characteristics such as the average run length, standard deviation of the run length, and the percentile points of the run length distribution. The comparisons revealed that the proposed chart outperformed recent nonparametric exponentially weighted moving average and nonparametric cumulative sum charts, in terms of detecting the shifts in process target. A real life example concerning the fill heights of soft drink beverage bottles is also provided to illustrate the application of the proposed nonparametric control chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.  相似文献   

16.
Multivariate CUSUM control charts are often used instead of the standard Hotelling's control charts in many practical problems when detection of small shifts in the process mean is important. However, design of multivariate CUSUM control charts are usually based on the average run length (ARL). In this work, we will compute the percentage points of the run-length distributions of two multivariate CUSUM control charts. It will be shown that interpretations based on ARL can be misleading since the in-control run-length distribution of a multivariate CUSUM is highly skewed. On the other hand, the percentage points of the run-length distribution provide additional information such as the median run length, early false out-of-control signals, and the skewness of the run-length distribution for a particular scheme. These extra information might provide quality control engineers further knowledge of a particular multivariate CUSUM control chart scheme.  相似文献   

17.
Control charts are popular monitoring tools in statistical process control toolkit. These are used to identify assignable causes in the process parameters (location and/or dispersion). These assignable causes result in a shift in the process parameter(s). The shift can be categorized into three sizes (small, moderate, and large). Memory control charts such as the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts are effective for identifying small-to-moderate shift(s) in the process. Likewise, mixed memory control charts are useful for efficient process monitoring. In this study, we have proposed two new mixed memory control charts based on auxiliary information named MxMEC and MxMCE control charts to improve the efficiency of these mixed charts. The MxMEC chart is a merger of the auxiliary information based MxEWMA chart and the classical CUSUM chart. Likewise, the MxMCE chart integrates the auxiliary information based MxCUSUM with the classical EWMA chart. The proposed MxMEC and MxMCE charts are evaluated through famous performance measures including average run length, extra quadratic loss, relative average run length, and performance comparison index. The performance of the study proposals is compared with the existing counterparts such as the classical CUSUM and EWMA, MxCUSUM, MxEWMA, MEC, MCE, and runs rules-based CUSUM charts. The comparisons revealed the superiority of the proposed charts against other competing charts particularly for small-to-moderate shifts in the process location. Finally, a real-life data is used to show the implementation procedure of the proposed charts in practical situations.  相似文献   

18.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

19.
In real life applications, many process‐monitoring problems in statistical process control are based on attribute data resulting from quality characteristics that cannot be measured on numerical or quantitative scales. For the monitoring of such data, a new attribute control chart has been proposed in this study, namely, the Poisson progressive Mean (PPM) control chart. The performance of the PPM chart is compared with the existing charts used for the monitoring of Poisson processes such as the Shewhart c‐chart, Poisson Exponentially Weighted Moving Average chart, Poisson double Exponentially Weighted Moving Average chart and the Poisson Cumulative Sum charts. The average run length comparison indicated the superior performance of the PPM chart in terms of shift detection ability. This study will help quality practitioners to choose an efficient attribute control chart.  相似文献   

20.
Control charts are one of the most powerful tools used to detect and control industrial process deviations in statistical process control. In this paper, a moving average control chart based on a robust scale estimator of standard deviation, namely, the sample median absolute deviation (MAD) statistic, for monitoring process dispersion, is proposed. A simulation study is conducted to evaluate the performance of the proposed moving average median absolute deviation (MA‐MAD) chart, in terms of average run length for various distributions. The results show that the moving average MAD chart performs well in detecting small and moderate shifts in process dispersion, especially when the normality assumption is violated. In addition, this chart is very efficient, especially when the quality characteristic follows a skewed distribution. Numerical and simulated examples are given at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号