首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
结合卫星遥感技术的太湖蓝藻水华形成风场特征   总被引:1,自引:0,他引:1  
为进一步了解太湖蓝藻水华形成和分布与近地面风场的关系,利用太湖湖面及周边地区2003~2013年气象与卫星观测数据分析、并应用WRF3.5.1数值模型模拟,发现太湖蓝藻水华主要出现在卫星观测时刻前6h平均风速为0.5~3.4 m/s的区间,占比达94.7%;蓝藻水华面积总体上随风速增大而减小,大范围蓝藻水华主要出现在前6h平均风速≤2 m/s的情形下,占比达89%;风向则主要影响蓝藻水华在太湖的空间分布格局.结果表明局地风场对于太湖蓝藻水华的形成、输移和分布具有重要作用.  相似文献   

2.
随着富营养化程度的加剧,太湖近30年来水华频发.为了探讨太湖西部沿岸水华暴发与环境因子的关系,于2017年4月1-18日(当地历年蓝藻暴发早期)在太湖西部沿岸进行了密集原位调查.共采集样品72个,测定了水温、溶解氧、各形态氮、磷营养盐浓度以及风速等环境指标,并利用GAM(广义相加模型)定量分析了叶绿素a含量与各环境因子间的关系.结果表明:①叶绿素a含量波动幅度较大(17.10~795.89 mg/m3),太湖西部沿岸带有明显的蓝藻水华暴发现象.②水温、风速以及硝态氮浓度与叶绿素a含量的变化显著相关(P<0.05),各环境因子按其对叶绿素a含量变化的解释率排序为水温>风速>硝态氮浓度.其中水温是影响叶绿素a含量最为重要的环境因子,叶绿素a含量随着水温的升高呈现明显上升趋势.风速也是影响叶绿素a含量的关键因子之一,较低的风速(<3 m/s)有利于蓝藻的漂移集聚从而形成水华,引起叶绿素a含量的升高.研究显示,GAM模型较好地解释了叶绿素a的含量变化,模型总体解释度达到70.6%,可为太湖西部沿岸蓝藻水华早期的预测预警提供一定的基础支撑.   相似文献   

3.
基于MODIS数据的太湖蓝藻变化与水温关系研究   总被引:3,自引:1,他引:2  
姜晟  张咏  蒋建军  金焰 《环境科技》2009,22(6):28-31
以太湖为研究区,基于2008年4~12月的60景EOS—MODIS 1B遥感影像数据。利用NDVI算法结合目视判读解译了水华分布变化的基本信息,通过劈窗算法反演太湖湖面水温,发现在2008年太湖蓝藻生长、暴发、衰退周期中。水华面积的大小与湖面均温值之间关系密切:在20℃以下时表层水温与太湖蓝藻生长暴发或沉寂消亡具有明显的相关性;20℃-30℃时水华的面积大小受到湖面温度和其他因素的共同影响,容易发生大规模蓝藻暴发:30℃以上时过高的表层水温会对蓝藻的上浮聚集具有一定抑制作用:太湖蓝藻全年消亡的临界温度与其初始生长的临界温度相比更低。研究同时发现太湖湖面温度的空间差异是影响蓝藻水华分布迁移的重要因素之一。  相似文献   

4.
风浪对太湖水体中胶体态营养盐和浮游植物的影响   总被引:18,自引:4,他引:14  
为了解不同风浪条件下太湖水中胶体态营养盐和浮游植物含量的特征, 选择不同风速情况进行现场观测和采样, 用切向流超滤法获取胶体, 测定胶体态有机碳、氮、磷及其他形态营养盐含量. 同时收集浮游植物样品, 测定其密度和生物量. 结果表明, 在风速小于4m/s时胶体氮(CN)和胶体磷(CP)含量随风速变大而升高, 而在风速大于4 m/s时其含量不再升高, 甚至略有降低; 叶绿素a(Chl-a)、浮游植物密度、蓝藻密度和蓝藻生物量均在风速小于4m/s时随风速增大而升高, 在风速大于4 m/s时随风速增大而降低, 说明小风浪有利于蓝藻生长或漂浮, 而大风浪对其生长或漂浮不利. CN和CP含量与浮游藻类含量呈显著正相关, 表明在藻类生长旺盛的夏季, 太湖水中胶体氮、磷的主要来源为藻类产物.  相似文献   

5.
EOS/MODIS数据非常适合于蓝藻水华的监测.为充分发挥EOS/MODIS数据高时间分辨率以及高光谱的独特优点,在2008年太湖蓝藻预警遥感监刹的基础上,利用MODIS数据开展了蓝藻水华时间和空间分布规律信息的提取方法研究,从蓝藻水华分布频率、分布区域的迁移变化以及基于水质指标反演(以温度为例)的相关性分析等方面系统开展太湖蓝藻水华时空发生规律提取方法研究,为蓝藻应急治理工作提供支持.  相似文献   

6.
全球气候变化对太湖蓝藻水华发展演变的影响   总被引:10,自引:2,他引:8       下载免费PDF全文
对太湖周边4个常规气象观测站的47年观测资料进行分析,以探讨全球气候变化对太湖蓝藻水华演变的影响.结果表明,20世纪80年代之前,太湖流域气象条件的年代际尺度变化趋势不利于蓝藻的生长和水华的形成,而在20世纪80年代以后,尤其是20世纪90年代以后,气温、风速、降水变化都较大,且都有利于蓝藻的生长和水华的形成,这与蓝藻水华的观测事实一致.据此定义了蓝藻水华气象指数,每年太湖蓝藻水华气象指数能够很好地反映蓝藻水华的发展变化情况.进而,分析了反映ENSO循环变化的Ni?o3指数与太湖流域气象条件变化的相关性,结果表明ENSO循环与太湖流域风速、降水在年代际尺度上有着非常好的相关性.据此预测,2000年以后10~20年中,太湖蓝藻水华气象指数将继续在高位振荡,若蓝藻生长所需的营养盐浓度得不到有效的控制和明显的降低,蓝藻水华在气候条件的影响下,仍将可能大面积暴发.  相似文献   

7.
富营养化和有害藻类水华暴发是全世界淡水湖泊共同面临的生态环境问题之一.巢湖作为典型的内陆淡水湖泊,其富营养化水平和蓝藻水华暴发面积常年居高不下,且在各湖区表现为一定的时空分布差异.为认识和了解不同阶段巢湖蓝藻水华发生和发展基本规律,利用巢湖水上综合观测平台和卫星遥感等多源数据,获得2015~2020年水体中藻密度和水华面积的时空分布信息,并采用基于增强回归树的机器学习算法,定量评估不同阶段各环境因子对蓝藻水华影响的重要程度及相互作用关系.结果表明:①巢湖蓝藻水华表现出较大的季节变化特征,蓝藻细胞在春季开始复苏,主要在巢湖西半湖和沿岸地区形成轻度水华,水体藻密度在夏、秋季达到最大,该季节发生中等程度以上的水华频率较高.②非暴发期间,巢湖藻密度变化受物理和化学因素影响较大,二者对解释藻密度方差变化的贡献率可达80.3%,水体中高浓度溶解氧、弱碱性pH值(7.2~7.6)和适宜水温(3℃)是藻类细胞生长繁殖的有利环境条件,巢湖蓝藻水华首次暴发一般在气温稳定通过7℃初日11 d前后出现.③暴发期内,巢湖蓝藻水华发生主要受藻类生物量和气象条件的综合影响,气温、藻密度、日照时数和风速的累计贡献率为95%,各因子均存在一个有利于蓝藻水华发生的最适区间.多因子交互作用分析结果显示,在水体藻密度大、气温适宜和微风的综合作用下,巢湖蓝藻水华发生概率较高.上述研究成果分析和揭示了不同阶段巢湖蓝藻水华的时空分布特征及其主导影响因子,可为巢湖蓝藻水华防控和预测、预警提供科学依据.  相似文献   

8.
基于MODIS影像估测太湖蓝藻暴发期藻蓝素含量   总被引:12,自引:2,他引:10       下载免费PDF全文
利用太湖水体藻蓝素的实测数据,基于蓝藻的光谱特征分析,选择MODIS 250m分辨率的卫星遥感影像,建立了藻蓝素估测模型.研究表明,该模型可以较为准确地识别新生蓝藻水华,辅助提取新生蓝藻水华的覆盖区.在新生蓝藻水华的覆盖区内,藻蓝素的定测估算已经失去实际意义,没有必要讨论估测的精度高低.在新生蓝藻水华的覆盖区外,藻蓝素的遥感估测精度取决于藻蓝素浓度的高低以及藻蓝素与叶绿素的定量关系,即当藻蓝素浓度35μg/L时,平均相对估测误差降至31%;但对于那些藻蓝素的浓度>35μg/L,且藻蓝素浓度与叶绿素a浓度的比值<8的湖区而言,藻蓝素浓度模型的相对估测误差约为29%.  相似文献   

9.
蓝藻垂向运动的表征对于理解浅水富营养化湖泊中蓝藻水华的形成过程至关重要.本研究以太湖为研究区,通过野外实验观测,分析蓝藻生物量及颗粒物粒径分布的垂向变化特征,结合一维蓝藻平流运动模型,研究在不同扰动强度和群体粒径下的蓝藻垂向运动规律.结果表明,在低风速条件下(风速小于3 m·s-1),太湖水体中蓝藻生物量在垂向上分布不均匀,其垂直分布剖线在水表或水柱某一深度形成峰值.当水华发生时,直径> 75μm的蓝藻群体主要聚集在水表,其剖线在水下形成不明显的峰值;在水华未发生时,75~175μm直径范围内的蓝藻群体主要聚集在水深1.2 m处,175~250μm直径范围内的大粒径蓝藻群体仍聚集在水表.垂向运动模拟表明,直径> 100μm的蓝藻群体随光照变化在水柱中进行周期性上浮下沉运动,直径<100μm的蓝藻群体,由于垂向迁移速度较小,在弱扰动条件下聚集在真光层深度附近.不同粒径蓝藻群体的垂向运动规律不同,导致蓝藻生物量垂直剖线在水表和水下形成两类特征峰.  相似文献   

10.
《环境工程》2007,25(4):77-77
无锡市正采取一系列措施,严防太湖蓝藻再度暴发。 实施六大工程促湖水变清.由于太湖水温超过30℃就容易引发蓝藻,面对即将到来的七、八月份持续高温,无锡市在做好水源地水质监测预警的同时,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号