首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two psychophysical experiments were carried out to investigate whether or not colour emotion responses would change with the advance of the viewer's age. Two forms of stimuli were used: 30 single colours (for Experiment 1) and 190 colour pairs (for Experiment 2). Four word pairs, warm/cool, heavy/light, active/passive, and like/dislike, were used to assess colour emotion and preference in Experiment 1. In Experiment 2, harmonious/disharmonious was also used in addition to the four scales for Experiment 1. A total of 72 Taiwanese observers participated, including 40 (20 young and 20 older) for Experiment 1 and 32 (16 young and 16 older) for Experiment 2. The experimental results show that for single colours, all colour samples were rated as less active, less liked, and cooler for older observers than for young observers. For colour combinations, light colour pairs were rated as less active and cooler for older observers than for young observers; achromatic colour pairs and those consisting of colours in similar chroma were rated as cooler, less liked and less harmonious for older observers than for young observers. The findings may challenge a number of existing theories, including the adaptation mechanism for retaining consistent perception of colour appearance across the lifespan, the modeling of colour emotion based on relative colour appearance values, and the additive approach to prediction of colour‐combination emotion. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

2.
This article classifies colour emotions for single colours and develops colour‐science‐based colour emotion models. In a psychophysical experiment, 31 observers, including 14 British and 17 Chinese subjects assessed 20 colours on 10 colour‐emotion scales: warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike. Experimental results show no significant difference between male and female data, whereas different results were found between British and Chinese observers for the tense–relaxed and like–dislike scales. The factor analysis identified three colour‐emotion factors: colour activity, colour weight, and colour heat. The three factors agreed well with those found by Kobayashi and Sato et al. Four colour‐emotion models were developed, including warm–cool, heavy–light, active–passive, and hard–soft. These models were compared with those developed by Sato et al. and Xin and Cheng. The results show that for each colour emotion the models of the three studies agreed with each other, suggesting that the four colour emotions are culture‐independent across countries. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 232–240, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20010  相似文献   

3.
A new set of quantitative models of colour emotion and colour harmony were developed in this study using psychophysical data collected from 12 regions in the world, including Argentina, China, France, Germany, Hungary, Iran, Japan, Spain, Sweden, Taiwan, Thailand, and the UK. These data have previously been published in journals or conferences (for details see Tables 1 and 2 ). For colour emotion, three new models were derived, showing satisfactory predictive performance in terms of an average correlation coefficient of 0.78 for “warm/cool”, 0.80 for “heavy/light” and 0.81 for “active/passive”. The new colour harmony model also had satisfactory predictive performance, with an average correlation coefficient of 0.72. Principal component analysis shows that the common colour harmony principles, including hue similarity, chroma similarity, lightness difference and high lightness principles, were partly agreed by observers of the same region. The findings suggest that it is feasible to develop universal models of colour emotion and colour harmony, and that the former was found to be relatively more culture‐independent than the latter.  相似文献   

4.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

5.
Colour emotion is a feeling or emotion induced in our brains when we look at a colour. In this article, the colour emotional responses obtained by conducting visual experiments in different regions, namely Hong Kong, Japan and Thailand, using a set of 218 colour samples are compared using a quantitative approach in an attempt to study the influence of different cultural and geographical locations. Twelve pairs of colour emotions described in opponent words were used. These word pairs are warm–cool, light–dark, deep–pale, heavy–light, vivid–sombre, gaudy–plain, striking–subdued, dynamic–passive, distinct–vague, transparent–turbid, soft–hard, and strong–weak. These word pairs represent the fundamental emotional response of human beings toward colour. The influences of lightness and chroma were found to be much more important than that of the hue on the colour emotions studied. Good correlations of colour emotions among these three regions in East Asia were found, with the best ones for colour emotion pairs being light–dark and heavy–light. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 451–457, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20062  相似文献   

6.
In a typical Euclidean three‐dimensional colour space such as CIELAB, the ‘third‐dimension’, such as CIELAB chroma, has long been criticized as being confusing and difficult to understand for naïve observers and it had relatively poor consistency in visual assessments. As an attempt to find a promising replacement to existing ‘third‐dimension’, two psychophysical experiments were conducted in this study using naïve observers. In the first experiment, 24 Korean observers assessed 48 NCS colour chips in terms of bright, light‐heavy, active‐passive, fresh‐stale, clean‐dirty, clear, boring, natural‐not natural, warm‐cool, intense‐weak, saturated, vivid‐dull, distinct‐indistinct, full‐thin and striking. According to experimental results, ‘saturated’ and ‘vivid‐dull’ were found to highly correlate with CIELAB chroma and were thus regarded as good candidates to become alternatives to existing ‘third‐dimension’. In the second experiment, 40 Korean and 68 British observers assessed more than 100 samples in terms of saturation, vividness, blackness and whiteness. Thus, observers assessed 120 samples for saturation, vividness and whiteness. For blackness, 110 samples were assessed. In both experiments, the colour samples were presented in a viewing cabinet and assessed individually. Principal component analysis identified two components that were associated with CIELAB lightness and chroma. In general, there was a similarity between the visual results of the British and Korean observers. High correlation coefficients were found for the following comparisons: predicted values of Berns' depth model versus the present ‘saturation’ response; Berns' clarity versus ‘vividness’ response; Berns' vividness versus ‘blackness’ response; and CIELAB lightness versus ‘whiteness’ response. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 203–215, 2017  相似文献   

7.
During the colour perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is known as colour emotion. In Part I of this study, a quantitative analysis of the cross‐regional differences and similarities of colour emotions as well as the influence of hue, lightness, and chroma on the colour emotions of the subjects from Hong Kong, Japan, and Thailand, was carried out. In Part II, colour emotions of the subjects in any two regions were compared directly using colour planners showing the effect of the lightness and the chroma of colours. The colour planners can help the designers to understand the taste and feelings of the target customers and facilitate them to select suitable colours for the products that are intended to be supplied in different regions. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 458–466, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20063  相似文献   

8.
A new colour space, named ULAB, is developed. It is derived from the CIELAB colour space and can be converted to and from CIELAB. Unlike modified CIELAB colour‐difference formulae, ULAB incorporates corrections for lightness, chroma, and hue differences into its colour coordinates. For the small magnitude colour difference data, it shows the performance as good as more complicated formulae such as CIEDE2000. ULAB shows another chance of developing a colour space approximately more uniform than CIELAB. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 17–29, 2015  相似文献   

9.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

10.
A psychophysical experiment was carried out to investigate factors affecting colour preference for Taiwanese floral pattern fabrics, as a case study of object colour preference. A total of 175 test images of Taiwanese fabrics were used as the stimuli presented on a calibrated computer display. The images were generated on the basis of 5 existing Taiwanese fabrics, each manipulated into 35 images by changing the fabric colour. The 35 colours were selected to cover the most frequently used colours for existing Taiwanese fabrics. The 175 test images were assessed by 76 Taiwanese observers in terms of 9 semantic scales, including Taiwanese style/non‐Taiwanese style, Japanese style/non‐Japanese style, splendid/plain, traditional/modern, active/passive, warm/cool, heavy/light, like/dislike and harmonious/disharmonious. The experimental results reveal two underlying factors: “Splendidness” and “Harmony.” The like/dislike response was found to highly correlate with harmonious/disharmonious, but have poor correlation with Taiwanese style/non‐Taiwanese style. The study also reveals several factors affecting colour preference for Taiwanese fabrics, including the interaction effect of colour and pattern, observer's general liking for the object, and the effect of user experience. These findings can help develop a more robust, comprehensive theory of object colour preference. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 43–55, 2016  相似文献   

11.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

12.
Varying magnitude of colour differences from threshold up to moderate size in painted sample pairs at five CIE colour centers was estimated by grey scale assessment. Painted samples were produced for constant step width along the main axes of previously determined threshold (x,y,Y)‐ellipsoids with lightness variation at constant (x,y)‐chromaticity starting with threshold length and enlarging it five times for moderate magnitude of colour difference. Pairs were formed for linear extensions along axes and for diagonal combinations at equal step width between axes. The model under test assumes additive linear scale extension in constant proportions of the threshold (x,y,Y)‐ellipsoid for increasing magnitude of perceived colour difference and correlates perceptual main colour characters with main ellipsoid axes. Both assumptions were falsified to some degree: in general, magnitude of colour difference varies differently, though close to linear, and slightly subadditive for the three axes and for the different colour centers; the short (x,y)‐ellipse axis in some cases is not correlated with a perceptual hue vector component, and the main lightness direction sometimes is tilted in relation to the (x,y)‐plane. Three colour‐difference formulae do not provide better global predictions than the local (x,y,Y)‐ellipsoid formulae. The results may be used for more detailed modeling of colour‐difference formulae and for tolerance settings at different ranges of colour difference. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 78–92, 1999  相似文献   

13.
This study investigates colour harmony in visual experiments in order to develop a new quantitative colour harmony model. On the basis of new experimental results, colour harmony formulae were developed to predict colour harmony from the CIECAM02 hue, chroma, and lightness correlates of the members of two‐ or three‐colour combinations. In the experiments, observers were presented two‐ and three‐colour combinations displayed on a well‐characterized CRT monitor in a dark room. Colour harmony was estimated visually on an 11 category scale from ?5 (meaning completely disharmonious) to +5 (meaning completely harmonious), including 0 as the neutral colour harmony impression. From these results, mathematical models of colour harmony were developed. The visual results were also compared with classical colour harmony theories. Two supplementary experiments were also carried out: one of them tested the main principles of colour harmony with real Munsell colour chips, and another one compared the visual rating of the new models with existing colour harmony theories. © 2009 Wiley Periodicals, Inc. Col Res Appl, 2010.  相似文献   

14.
15.
The texture effect on visual colour difference evaluation was investigated in this study. Five colour centers were selected and textured colour pairs were generated using scanned textile woven fabrics and colour‐mapping technique. The textured and solid colour pairs were then displayed on a characterized cathode ray tube (CRT) monitor for colour difference evaluation. The colour difference values for the pairs with texture patterns are equal to 5.0 CIELAB units in lightness direction. The texture level was represented by the half‐width of histogram, which is called texture strength in this study. High correlation was found between texture strength and visual colour difference for textured colour pairs, which indicates that an increasing of 10 units of texture strength in luminance would cause a decreasing of 0.25 units visual difference for the five colour centers. The ratio of visual difference between textured and solid colour pairs also indicates a high parametric effect of texture. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 341–347, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.  相似文献   

16.
In an earlier article the authors related visually‐ scaled large colour differences to ΔE* values calculated using four colour‐difference formulae. All four metrics yielded linear regressions from plots of visual colour difference against ΔE*, and ΔE gave the best linear fit, but the correlations were rather low. In an effort to clarify matters, the previous investigation is expanded to include data not hitherto examined. The link between visual colour difference and ΔE* colour metrics is further explored in terms of a power law relationship over a wide range of lightness, hue, and chroma variations within CIELAB colour space. It is shown that power‐law fits are superior to linear regressions in all cases, although correlations over large regions of the colour space are not very high. Partitioning of the experimental results to give reduced data sets in smaller regions is shown to improve correlations markedly, using power‐law fits. Conclusions are drawn concerning the uniformity of CIELAB space in the context of both linear and power‐law behavior. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 116–122, 2000  相似文献   

17.
Light‐emitting diode (LED) technology offers the possibility of obtaining white light, despite narrow‐band spectra. In order to characterize the colour discrimination efficiency of various LED clusters, we designed a classification test, composed of 32 caps equally distributed along the hue circle at about 3 ΔE* ab‐unit intervals. Forty normal colour observers were screened under four different LED test light sources adjusted for best colour rendering, and under one control incandescent light of the same colour temperature. We used commercially available red, green, blue, and/or amber LED clusters. These yielded a poor colour rendering index (CRI). They also induced a significantly higher number of erroneous arrangements than did the control light. Errors are located around greenish‐blue and purplish‐red shades, parallel to the yellow‐axis direction, whereas when the distribution of light covers the full spectrum, the LED clusters achieve satisfactory colour discrimination efficiency. With respect to the lights we tested, the colour discrimination is correlated with the CIE CRIs as well as with a CRI based on our sample colours. We stress the fact that increasing the chroma of samples by lighting does not necessarily imply an improvement of colour discrimination. © 2008 Wiley Periodicals, Inc. Col Res Appl, 34, 8–17, 2009.  相似文献   

18.
A grey‐scale psychophysical experiment was carried out for evaluating colour differences using printed colour patches. In total, 446 pairs of printed samples were prepared surrounding 17 colour centers recommended by the CIE with an average δE of 3 units. Each pair was assessed 27 times by nine observers. The visual results were used to test some selected more advanced colour‐difference formulae and uniform colour spaces. The results showed that CIELAB and OSA performed the worst, and the advanced formulae and spaces gave quite satisfactory performance such as CIEDE2000, CIE94, DIN99d, CAM02‐UCS, and OSA‐GP‐Eu. The colour discrimination ellipses were used to compare with those of the earlier studies. The results showed that they agreed well with each other. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

19.
The formulation of a metric to provide numbers that correlate with visually perceived colour differences has proved a very difficult task. Most early experimental work was concerned with just-perceptible colour differences. Later the concept of perceptibility was expanded to acceptability, it being argued that many industrial tolerances were larger than just-perceptible. This led naturally to the concept of large colour differences and the question as to whether the current CIE colour-difference formulae, specified as appropriate for just-perceptible differences, can be applied to larger differences than those concerned with, for instance, colour matches experienced in the fabric dyeing industry. This article investigates the application of four colour-difference formulae to visual scaling of large colour differences between photographically prepared reflection colour samples at approximately constant lightness. It is shown that the scaling of colour differences depends on the directions of hue and chroma differences of a test sample when compared with a reference. It is also shown that, of the four candidate colour-difference metrics, the modified CIE 1976 L*a*b* colour difference, referred to as CIE1994 or , correlates best with visual scaling. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 298–307, 1997  相似文献   

20.
Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour‐normal observers (n = 185). These data were then used to evaluate the most commonly used colour appearance model, CIECAM02, by transforming the CIEXYZ tristimulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is important. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号