首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
针对汽车用6061和6063铝合金薄壁结构,先进行了准静态拉伸试验和180°弯曲试验,得到了铝合金的真应力-真应变曲线;然后采用线性回归拟合的方法建立了铝合金韧性断裂的本构模型,在此基础上,建立了铝合金薄壁结构压缩失效的有限元模型,并通过轴向压缩试验验证了有限元模型的准确性。结果表明:拉伸后,6061铝合金的表面呈橘皮形貌,6063铝合金的表面比较光滑;两种铝合金的断裂均为韧性断裂,6063铝合金具有更好的韧性;6061和6063铝合金的韧性断裂准则参数分别为104.81 MPa和179.91 MPa;有限元预测得到的铝合金薄壁结构的失效行为与试验结果比较吻合,证明了铝合金韧性断裂本构模型的正确性。  相似文献   

2.
采用分离式霍普金森压杆装置对6013-T4铝合金在不同温度(25,200,300℃)和应变速率(1 000,2 000,3 000,4 000,5 000s-1)下进行了动态压缩试验,研究了该铝合金在冲击载荷作用下的动态力学行为,并采用试验拟合得到的Johnson-Cook本构方程,对动态冲击试验进行了数值模拟。结果表明:6013-T4铝合金具有明显的应变速率和应变硬化效应,动态流变应力随变形温度的升高而减小;室温下合金的屈服强度对应变速率不敏感,但随变形温度的升高,屈服强度的应变速率敏感性增强;基于室温准静态与不同温度和应变速率下的动态真应力-真应变曲线,确定了铝合金的Johnson-Cook本构方程;不同温度和应变速率下真应力-真应变曲线的数值模拟结果与本构方程拟合和试验结果均吻合的较好。  相似文献   

3.
在应变速率为0.01~10 s-1、温度为250~450℃的条件下,采用Gleeble-1500型热模拟试验机对7075铝合金进行了高温热压缩试验,得出其变形过程中的真应力-真应变曲线;通过拟合回归分析得出了该合金高温变形过程中的本构模型并对其应变行为进行了预测。结果表明:在峰值应力之前,Fields-Backofen本构模型预测值与试验值比较吻合;在加入软化因子之后,模型的预测值更接近试验值。  相似文献   

4.
新型TA32钛合金板的高温拉伸变形行为   总被引:1,自引:0,他引:1  
在变形温度650~850℃、应变速率0.001~0.100s-1条件下对TA32钛合金板进行高温拉伸试验,研究了变形温度和应变速率对合金高温拉伸变形行为的影响;基于修正的Hooke定律和Grosman方程建立TA32钛合金的高温流变本构方程并进行试验验证。结果表明:TA32钛合金的流变应力受变形温度和应变速率的影响显著,变形温度的升高和应变速率的降低均会使流变应力减小;在变形温度650℃、应变速率0.100s-1下,合金的抗拉强度为680 MPa,约为常温抗拉强度的80%,合金仍具有较高的强度;当变形温度由750℃升至850℃时,合金伸长率的增长幅度和强度的下降幅度均较明显,合金塑性较好;采用建立的高温流变本构方程计算得到的真应力-真应变曲线与试验结果基本吻合,其相关系数和平均相对误差分别为0.979 4和11.1%,该本构模型可较好地描述TA32钛合金的高温拉伸变形行为。  相似文献   

5.
采用圆柱形试样等温(573K)压缩试验方法对不同应变速率下AM60B镁合金压缩变形行为进行了研究,采用数理统计方法建立了573K时AM60B镁合金不同应变速率下塑性变形的本构模型。结果表明:AM60B镁合金的流变应力随着应变速率的升高而增大,塑性变形率随着应变速率的升高而降低;建立的本构模型能充分反映不同应变速率对其塑性变形过程的影响规律。  相似文献   

6.
刘培星 《机械工程材料》2021,45(5):96-99,104
在CR1500HF热成形钢U形件不同位置取样,进行应变速率在1~500 s-1的拉伸试验,研究了不同位置拉伸性能的差异和应变速率对热压成形件拉伸性能的影响;建立材料拉伸有限元模型,模拟分析了该钢的高速拉伸性能和拉伸试样加持端应力分布.结果表明:该热压成形U形件侧壁位置的抗拉强度和屈服强度低于法兰和底部位置,在进行碰撞分析时需考虑部分位置因冷却不足强度降低的影响;随着应变速率的增加,U形件不同位置的屈服强度和抗拉强度均增大;由拉伸有限元模型模拟得到的真应力-真塑性应变曲线与combined S-H本构模型拟合得到的曲线吻合较好,应变速率1,500 s-1下真应力均方根误差分别为19.98,39.48 MPa;高速拉伸过程中拉伸试样夹持端大部分处于弹性变形阶段,应变片粘贴位置距试样圆弧处的距离应大于19 mm.  相似文献   

7.
采用Gleeble 3500型热模拟试验机对HG700汽车大梁钢进行单道次压缩试验,研究了其在变形温度950~1 150℃和应变速率0.01~5.00s~(-1)条件下的流变应力行为;根据真应力-真应变曲线,采用线性回归方法建立该钢的流变应力本构模型,并进行了试验验证。结果表明:在高应变速率(1.00,5.00s~(-1))下,HG700汽车大梁钢的动态软化行为以动态回复为主,而在低应变速率(0.01,0.10s~(-1))下,HG700汽车大梁钢发生了明显的动态再结晶;变形温度的升高及应变速率的降低均会促进流变应力的降低,且会促进应力更早达到峰值;由构建的以变形温度、应变速率、真应变为变量的流变应力本构模型得到的预测结果与试验结果吻合良好,该模型可准确地预测HG700汽车大梁钢的流变应力。  相似文献   

8.
通过对B280VK低合金高强钢在应变率分别为0.003、20、80、180和530/s下进行高速拉伸试验,对其不同应变率下的动态力学性能进行研究,得到不同应变率下B280VK低合金高强钢的应力-应变曲线,并对不同应变率下的材料延伸率、流变应力、抗拉强度以及显微组织变化进行了分析。试验结果表明,随着材料应变率的升高,B280VK低合金高强钢的流变应力、屈服强度和抗拉强度均增大。另外,基于Johnson-Cook本构模型,建立该B280VK低合金高强钢应变率相关性塑性变形本构模型,本构方程模拟结果与试验结果吻合程度较为良好。  相似文献   

9.
在不同温度(300~475℃)和应变速率(0.000 5~0.1s-1)条件下对H18热处理态的2024铝合金进行了高温拉伸试验,得到了其应力-应变曲线,结合显微组织观察分析了温度及应变速率对该铝合金流变行为的影响与高温塑性变形时的动态软化机制。结果表明:H18态2024铝合金在300℃以上高温进行塑性变形时发生了再结晶,经过475℃、应变速率0.000 5s-1拉伸变形后,晶粒呈等轴状;其伸长率随着变形温度升高和应变速率的增大呈现先上升后下降的趋势;最大应力及应变硬化指数随温度的升高或应变速率的降低而下降;应变速率敏感指数随温度的升高而增大。  相似文献   

10.
车身结构影响了整车的碰撞安全性,其中车身承载部件在碰撞过程中主要表现为剪切失效,因此需要对车身材料的动态剪切力学特性展开研究。为了描述6061-T6铝合金材料在复杂工况下的力学特性,进行了准静态和动态力学性能试验。基于不同应力状态和应变率下铝合金力学性能的测试数据,标定了材料的本构模型和断裂模型参数,并通过对比试验与仿真结果验证了材料参数的准确性。为了实现拉伸试验机开展铝合金薄板剪切试验,设计四种形状的薄板剪切试件,采用数值模拟对比所设计剪切试件的应力及应变分布,并分析不同剪切应变率对6061-T6铝合金材料剪切力学特性的影响规律。结果表明:圆形开口对称试件适用于研究塑性变形阶段的失效断裂,而圆形开口偏置试件适用于研究弹性变形阶段的应力应变关系。在低剪切应变率范围内,6061-T6铝合金无显著的应变率强化效应,然而随着应变率的增加敏感性有所提高。  相似文献   

11.
在304不锈钢成分基础上,添加了质量分数1.96%的硼元素,采用真空感应熔炼技术制备含硼不锈钢,对该钢进行单道次热压缩试验,研究了该钢在900~1150℃ 和应变速率0.1~10 s-1条件下的热变形行为;根据试验数据,基于Arrhenius方程并结合5次多项式拟合建立该钢的热变形本构模型,对加工硬化率-真应力曲线进行分析确定该钢发生动态再结晶的临界条件.结果表明:在试验参数下热压缩后,含硼不锈钢的流变应力-应变曲线为典型的动态再结晶型,软化机制以动态再结晶为主;随着变形温度的升高或应变速率的减小,试验钢的峰值应力及其对应的真应变降低;采用所建立的热变形本构方程计算得到的真应力-真应变曲线与试验测得的相吻合,平均相对误差绝对值为2.76%,说明该本构模型能够准确预测含硼不锈钢的热变形行为;变形温度较高、应变速率较小时,该钢较易发生动态再结晶.  相似文献   

12.
低频振动塑性成形粘弹塑性模型的体积效应分析   总被引:1,自引:0,他引:1  
采用Kirchner对应变时间历程的基本假设,针对振动拉伸建立一个一维粘弹塑性模型;利用MATLAB中的符号计算,推导粘弹塑性本构方程的显式表达式.通过确立粘弹塑性边界并对本构方程进行数值求解,可以确定金属在振动加工过程中,其应力应变在粘弹性与粘塑性之间的变化情况.通过计算瞬时应变的大小与屈服限建立粘弹性变形和粘塑性变形的判断准则.在考虑粘弹塑性本构关系中的后继屈服情况、应变历程、应变率历程及弹性应变等因素后,可以确定单轴振动拉伸时材料变形的动态应力和平均应力.根据所给定的振型参数和材料力学性能参数,结合特定的振动拉伸实例,分别得出金属在准静态拉伸和振动拉伸时的动态应力-时间、动态应力-应变和平均应力-应变率的变化趋势等,实现基于粘弹塑性本构关系的低频振动塑性成形的体积效应机理分析.  相似文献   

13.
利用Gleeble-3500型热模拟机对AM60镁合金板进行热拉伸试验,研究了镁合金在变形温度200~350℃、应变速率0.01~0.1 s-1下的热变形行为;对Johnson-Cook方程应变硬化部分进行修正并考虑应变速率和变形温度的耦合效应,基于热拉伸试验数据建立了修正Johnson-Cook本构方程,利用该方程进行冲压有限元模拟,并进行了试验验证。结果表明:AM60镁合金的流变应力与应变速率呈正相关,与变形温度呈负相关;采用修正Johnson-Cook本构模型预测得到AM60镁合金冲压真应力-真应变曲线与试验结果吻合较好,最大相对误差为18.28%,相比于未修正模型降低了57.61%;模拟得到200~350℃下冲压成形的筒形件成形良好,无表面缺陷,与试验结果一致。  相似文献   

14.
在常温下对SUS301L-MT不锈钢进行了应变速率为0.000 5 s-1的准静态和0.1~500 s-1的动态拉伸试验,基于经典J-C模型拟合得到其应力-应变曲线,通过最大拟合优度和匹配优度确定应变速率敏感系数,对经典J-C本构模型的模拟准确性进行分析;引入动态放大模量确定马氏体相变强化和绝热温升软化的临界应变,对J-C模型进行修正,并对修正模型的拟合结果进行了验证。结果表明:经典J-C本构模型无法准确描述试验钢在高应变速率塑性变形时的马氏体相变强化效应和绝热温升软化效应;修正后的J-C本构模型可准确描述应变速率在0.000 5~500 s-1时试验钢的力学行为,其匹配优度高达0.985,表明该模型合理有效。  相似文献   

15.
研究材料断裂应变与应力三轴度的关系,从而建立其断裂失效模型,对分析6061-T6铝合金断裂失效过程具有重要理论意义和应用价值。分别借助数字图像相关(DIC)测量技术和Abaqus软件对6061-T6铝合金光滑圆棒试件与缺口圆棒试件准静态拉伸过程进行试验和数值模拟,基于所得结果对后者应力三轴度进行分析和修正,从而得到Johnson-Cook(J-C)失效模型的部分材料参数,并建立了6061-T6铝合金断裂应变与应力三轴度的关系模型。将建立的失效模型输入到Abaqus中进行断裂数值模拟,模拟结果与试验结果基本一致,验证了失效模型的正确性。研究表明:6061-T6铝合金的断裂应变随应力三轴度的增加而减小;采用J-C失效模型可以较好的描述6061-T6铝合金在不同应力三轴度下的断裂失效行为。  相似文献   

16.
为了提高5052铝合金在应用中的安全性,准确的计算结构件在复杂载荷下的强度,非常有必要对材料在不同应变率下的力学性能进行研究。本文分别采用高温电子万能试验机和霍普金森拉杆装置对其进行了准静态和高应变率下的拉伸试验,得到了材料的应力-应变曲线,构建了能够准确描述其塑性变形行为的本构模型。结果表明:5052铝合金具有明显的应变率敏感性,且随着应变率的增加,其屈服强度和强度极限不断增加。基于试验结果,本文提出采用一种修正的Johnson-Cook模型来拟合材料的动态本构关系,拟合结果与试验数据吻合度较高;进一步使用ANSYS软件用此模型模拟了高应变率下试样的单向拉伸过程,提取典型节点的应力应变曲线,模拟结果与试验结果相吻合。说明本文所建立的修正Johnson-Cook模型能够较好地描述5052铝合金的动态特性,可为实际工程中的数值模拟问题提供数据支持,从而为零部件的加工工艺、结构设计和实际生产提供可靠的参考和有效的指导。  相似文献   

17.
通过在RG2000-20电子万能试验拉伸机上进行热拉伸试验,研究了TC4钛合金在850℃~920℃温度范围内和应变速率为0.000 01~0.001s~(-1)条件下的流动应力行为,通过计算得到真实应力、应变曲线,分析了温度、应变速率对TC4钛合金高温热拉伸行为的影响。针对式样的塑性变形阶段使用Grosman方程,弹性变形阶段使用改进的Hooke Law,建立TC4钛合金在高温拉伸时的本构方程。  相似文献   

18.
高强铝合金热成形工艺条件下的变形行为表征,需要在考虑温度、应变速率及应变影响的基础上结合微观演化行为建立热塑性本构关系。总结了高强铝合金热塑性变形本构关系相关研究成果。研究结果表明:广泛应用的唯象本构模型通过修正模型参数可以充分耦合应变、温度及应变速率作用,并准确地预测不同变形条件下的流动应力,然而缺乏对变形机制的明确解释,使得唯象本构模型对试验温度、应变速率变化范围较大以及试验条件范围外的变形行为预测精度难以得到保证;基于物理意义的本构模型能够模拟位错密度、晶粒尺寸及动态再结晶等微观演化过程,对流动应力进行精确计算,展现了强大的宏微观变形预测能力,是高强铝合金热塑性变形本构关系的研究趋势。  相似文献   

19.
《工具技术》2015,(10):48-51
使用分离式霍普金森压杆(SHPB)实验装置测得1060铝合金在不同温度及应变速率下的动态力学性能,并基于power-law本构方程对测得的实验数据进行拟合获得模型参量。结果表明:1060铝合金冲击加载过程中发生高温软化,其峰值应力和流变应力随变形温度升高而降低;当应变率达到4000/s时,1060铝合金的强度和流动应力相比于低应变速率条件下均明显增大,合金表现出强烈的应变强化效应;拟合得到的1060铝合金power-law动态本构模型能较好地预测实验中材料的流动应力。  相似文献   

20.
在变形温度为200~525℃、应变速率为0.008,0.013 s~(-1)的条件下,采用等应变速率法对AA5083合金板的拉伸流变行为进行了研究,并采用修正后的Backofen方程描述了该合金在此温度范围内的流变行为,建立了该合金应力随温度变化的本构模型。结果表明:AA5083合金在该应变速率和变形温度下,拉伸变形几乎未呈现应变硬化特征,流变应力只对温度和应变速率敏感,且随温度升高而降低,随应变速率的增大而升高;合金的流变阶段呈现出稳态,且随着温度升高该阶段延长,表现超塑特性;温度为200℃时,合金几乎未进入稳态阶段而出现明显应变软化,表现出动态再结晶特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号