首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Verde  J C Labbé  M Dorée  E Karsenti 《Nature》1990,343(6255):233-238
Microtubules are involved in the transport of vesicles in interphase and of the chromosomes during mitosis. Their arrangement and orientation in the cell are therefore of prime importance and specific patterns are believed to be generated by modulations of the intrinsic dynamic instability of microtubules. Here it is shown that the interphase-metaphase transition of microtubule arrays is under the control of the cdc2 kinase that precisely regulates the dynamics and steady-state length of microtubules.  相似文献   

2.
MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways.   总被引:1,自引:0,他引:1  
L M Ballou  H Luther  G Thomas 《Nature》1991,349(6307):348-350
Activation of protein synthesis is required for quiescent cells to transit the cell cycle, and seems to be mediated in part by phosphorylation of the 40S ribosomal protein, S6. A mitogen-activated S6 kinase of relative molecular mass 70,000 (70K) has been isolated from mouse fibroblasts as well as from avian, rat and rabbit tissues. Comparison of complementary DNA sequences shows that this enzyme is distinct from S6 kinase II (92K) found in Xenopus eggs and fibroblasts. Both kinases are activated by serine/threonine phosphorylation, suggesting that at least one serine/threonine kinase links receptor tyrosine kinases with S6 kinases. A candidate for this link is MAP2 kinase, which is rapidly activated by tyrosine/threonine phosphorylation following mitogenic stimulation. Incubation of MAP2 kinase from insulin-treated 3T3-L1 adipocytes with phosphatase-inactivated S6 kinase II from Xenopus leads to partial reactivation and phosphorylation of the enzyme. These and other findings have led to the suggestion that MAP2 kinase also activates the 70K S6 kinase. Here we refute this idea by showing that the two kinases lie on distinct signalling pathways.  相似文献   

3.
4.
Regulation of carbamoyl phosphate synthetase by MAP kinase   总被引:9,自引:0,他引:9  
The de novo synthesis of pyrimidine nucleotides is required for mammalian cells to proliferate. The rate-limiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the multifunctional enzyme CAD. Here we describe the regulation of CAD by the mitogen-activated protein (MAP) kinase cascade. When phosphorylated by MAP kinase in vitro or activated by epidermal growth factor in vivo, CAD lost its feedback inhibition (which is dependent on uridine triphosphate) and became more sensitive to activation (which depends upon phosphoribosyl pyrophosphate). Both these allosteric regulatory changes favour biosynthesis of pyrimidines for growth. They were accompanied by increased epidermal growth factor-dependent phosphorylation of CAD in vivo and were prevented by inhibition of MAP kinase. Mutation of a consensus MAP kinase phosphorylation site abolished the changes in CAD allosteric regulation that were stimulated by growth factors. Finally, consistent with an effect of MAP kinase signalling on CPS II activity, epidermal growth factor increased cellular uridine triphosphate and this increase was reversed by inhibition of MAP kinase. Hence these studies may indicate a direct link between activation of the MAP kinase cascade and de novo biosynthesis of pyrimidine nucleotides.  相似文献   

5.
M A Félix  J C Labbé  M Dorée  T Hunt  E Karsenti 《Nature》1990,346(6282):379-382
The cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 and the other is a cyclin. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis. The association of cyclin and p34cdc2 is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.  相似文献   

6.
A Amon  U Surana  I Muroff  K Nasmyth 《Nature》1992,355(6358):368-371
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.  相似文献   

7.
Nishiyama T  Ohsumi K  Kishimoto T 《Nature》2007,446(7139):1096-1099
Until fertilization, the meiotic cell cycle of vertebrate eggs is arrested at metaphase of meiosis II by a cytoplasmic activity termed cytostatic factor (CSF), which causes inhibition of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets mitotic cyclins-regulatory proteins of meiosis and mitosis-for degradation. Recent studies indicate that Erp1/Emi2, an inhibitor protein for the APC/C, has an essential role in establishing and maintaining CSF arrest, but its relationship to Mos, a mitogen-activated protein kinase (MAPK) kinase kinase that also has an essential role in establishing CSF arrest through activation of p90 ribosomal S6 kinase (p90rsk), is unclear. Here we report that in Xenopus eggs Erp1 is a substrate of p90rsk, and that Mos-dependent phosphorylation of Erp1 by p90rsk at Thr 336, Ser 342 and Ser 344 is crucial for both stabilizing Erp1 and establishing CSF arrest in meiosis II oocytes. Semi-quantitative analysis with CSF-arrested egg extracts reveals that the Mos-dependent phosphorylation of Erp1 enhances, but does not generate, the activity of Erp1 that maintains metaphase arrest. Our results also suggest that Erp1 inhibits cyclin B degradation by binding the APC/C at its carboxy-terminal destruction box, and this binding is also enhanced by the Mos-dependent phosphorylation. Thus, Mos and Erp1 collaboratively establish and maintain metaphase II arrest in Xenopus eggs. The link between Mos and Erp1 provides a molecular explanation for the integral mechanism of CSF arrest in unfertilized vertebrate eggs.  相似文献   

8.
Xiong W  Ferrell JE 《Nature》2003,426(6965):460-465
The maturation of Xenopus oocytes can be thought of as a process of cell fate induction, with the immature oocyte representing the default fate and the mature oocyte representing the induced fate. Crucial mediators of Xenopus oocyte maturation, including the p42 mitogen-activated protein kinase (MAPK) and the cell-division cycle protein kinase Cdc2, are known to be organized into positive feedback loops. In principle, such positive feedback loops could produce an actively maintained 'memory' of a transient inductive stimulus and could explain the irreversibility of maturation. Here we show that the p42 MAPK and Cdc2 system normally generates an irreversible biochemical response from a transient stimulus, but the response becomes transient when positive feedback is blocked. Our results explain how a group of intrinsically reversible signal transducers can generate an irreversible response at a systems level, and show how a cell fate can be maintained by a self-sustaining pattern of protein kinase activation.  相似文献   

9.
Spred is a Sprouty-related suppressor of Ras signalling   总被引:19,自引:0,他引:19  
Cellular proliferation, and differentiation of cells in response to extracellular signals, are controlled by the signal transduction pathway of Ras, Raf and MAP (mitogen-activated protein) kinase. The mechanisms that regulate this pathway are not well known. Here we describe two structurally similar tyrosine kinase substrates, Spred-1 and Spred-2. These two proteins contain a cysteine-rich domain related to Sprouty (the SPR domain) at the carboxy terminus. In Drosophila, Sprouty inhibits the signalling by receptors of fibroblast growth factor (FGF) and epidermal growth factor (EGF) by suppressing the MAP kinase pathway. Like Sprouty, Spred inhibited growth-factor-mediated activation of MAP kinase. The Ras-MAP kinase pathway is essential in the differentiation of neuronal cells and myocytes. Expression of a dominant negative form of Spred and Spred-antibody microinjection revealed that endogenous Spred regulates differentiation in these types of cells. Spred constitutively associated with Ras but did not prevent activation of Ras or membrane translocation of Raf. Instead, Spred inhibited the activation of MAP kinase by suppressing phosphorylation and activation of Raf. Spred may represent a class of proteins that modulate Ras-Raf interaction and MAP kinase signalling.  相似文献   

10.
J Gautier  T Matsukawa  P Nurse  J Maller 《Nature》1989,339(6226):626-629
Genetic studies in the fission yeast Schizosaccharomyces pombe have established that a critical element required for the G2----M-phase transition in the cell cycle is encoded by the cdc2+ gene. The product of this gene is a serine/threonine protein kinase, designated p34cdc, that is highly conserved functionally from yeast to man2 and has a relative molecular mass of 34,000 (34 K). Purified maturation-promoting factor (MPF) is a complex of p34cdc2 and a 45K substrate that appears in late G2 phase and is sufficient to drive cells into mitosis. This factor has been identified in all eukaryotic cells, and in vitro histone H1 is the preferred substrate for phosphorylation. The increase in the activity of H1 kinase in M-phase is associated with a large increase in total cell protein phosphorylation which is believed to be a consequence of MPF activation. We show here that the H1 kinase activity of p34cdc2 oscillates during the cell cycle in Xenopus, and maximal activity correlates with the dephosphorylated state of p34cdc2. Direct inactivation of MPF in vitro is accompanied by phosphorylation of p34cdc2 and reduction of its protein kinase activity.  相似文献   

11.
12.
Raf-1 activates MAP kinase-kinase.   总被引:56,自引:0,他引:56  
The normal cellular homologue of the acutely transforming oncogene v-raf is c-raf-1, which encodes a serine/threonine protein kinase that is activated by many extracellular stimuli. The physiological substrates of the protein c-Raf-1 are unknown. The mitogen-activated protein (MAP) kinases Erk1 and 2 are also activated by mitogens through phosphorylation of Erk tyrosine and threonine residues catalysed by a protein kinase of relative molecular mass 50,000, MAP kinase-kinase (MAPK-K). Here we report that MAPK-K as well as Erk1 and 2 are constitutively active in v-raf-transformed cells. MAPK-K partially purified from v-raf-transformed cells or from mitogen-treated cells can be deactivated by phosphatase 2A. c-Raf-1 purified after mitogen stimulation can reactivate the phosphatase 2A-inactivated MAPK-K over 30-fold in vitro. c-Raf-1 reactivation of MAPK-K coincides with the selective phosphorylation at serine/threonine residues of a polypeptide with M(r) 50,000 which coelutes precisely on cation-exchange chromatography with the MAPK-K activatable by c-Raf-1. These results indicate that c-Raf-1 is an immediate upstream activator of MAPK-K in vivo. To our knowledge, MAPK-K is the first physiological substrate of the c-raf-1 protooncogene product to be identified.  相似文献   

13.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

14.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

15.
Mochida S  Hunt T 《Nature》2007,449(7160):336-340
Fertilization induces a transient increase in cytoplasmic Ca2+ concentration in animal eggs that releases them from cell cycle arrest in the second meiotic metaphase. In frog eggs, Ca2+ activates Ca2+/calmodulin-activated kinase, which inactivates cytostatic factor, allowing the anaphase-promoting factor to turn on and ubiquitinate cyclins and securin, which returns the cell cycle to interphase. Here we show that the calcium-activated protein phosphatase calcineurin is also important in this process. Calcineurin is transiently activated after adding Ca2+ to egg extracts, and inhibitors of calcineurin such as cyclosporin A (ref. 8) delay the destruction of cyclins, the global dephosphorylation of M-phase-specific phosphoproteins and the re-formation of a fully functional nuclear envelope. We found that a second wave of phosphatase activity directed at mitotic phosphoproteins appears after the spike of calcineurin activity. This activity disappeared the next time the extract entered M phase and reappeared at the end of mitosis. We surmise that inhibition of this second phosphatase activity is important in allowing cells to enter mitosis, and, conversely, that its activation is required for a timely return to interphase. Calcineurin is required to break the deep cell cycle arrest imposed by the Mos-MAP (mitogen-activated protein) kinase pathway, and we show that Fizzy/Cdc20, a key regulator of the anaphase-promoting factor, is an excellent substrate for this phosphatase.  相似文献   

16.
gamma-Tubulin is a newly identified member of the tubulin family whose sequence is highly conserved from yeast to man. This minor microtubule protein is localized to the microtubule organizing centres and a mutation in the gene encoding it produces a microtubuleless mitotic arrest in the filamentous fungus Aspergillus nidulans. Here we investigate the in vivo function of gamma-tubulin in mammalian cells using a synthetic peptide to generate a polyclonal antibody that binds to a highly conserved segment of gamma-tubulin. After microinjection into cultured mammalian cells, immunofluorescence localization revealed that this antibody binds to native centrosomes at all phases of the cell cycle. In the presence of the gamma-tubulin antibody, microtubules fail to regrow into cytoplasmic arrays after depolymerization induced by nocodazole or cold. Furthermore, cells injected immediately before or during mitosis fail to assemble a functional spindle. Thus in vivo gamma-tubulin is required for microtubule nucleation throughout the mammalian cell cycle.  相似文献   

17.
18.
Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase.   总被引:52,自引:0,他引:52  
The macrolide rapamycin induces cell cycle G1 arrest in yeast and in mammalian cells, which suggests that an evolutionarily conserved, rapamycin-sensitive pathway may regulate entry into S phase. In mammals, rapamycin inhibits interleukin-2 receptor-induced S phase entry and subsequent T-cell proliferation, resulting in immunosuppression. Here we show that interleukin-2 selectively stimulates the phosphorylation and activation of p70 S6 kinase but not the erk-encoded MAP kinases and rsk-encoded S6 kinases. Rapamycin completely and rapidly inhibits interleukin-2-induced phosphorylation and activation of p70 S6 kinase at concentrations comparable to those blocking S phase entry of T cells (0.05-0.2 nM). The structurally related macrolide FK506 competitively antagonizes the actions of rapamycin, indicating that these effects are mediated by FKBP, which binds the transition-state mimic structure common to both rapamycin and FK506 (refs 4, 6, 9-11). The selective blockade of the p70 S6 kinase activation cascade by the rapamycin-FKBP complex implicates this signalling pathway in the regulation of T cell entry into S phase.  相似文献   

19.
20.
Matheny SA  Chen C  Kortum RL  Razidlo GL  Lewis RE  White MA 《Nature》2004,427(6971):256-260
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号