首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We explored the main factors affecting the global distribution of tree cavities - a habitat component of mostly biotic origin that is crucial for many animal species. We considered the influence of eight environmental variables (ranging from the single-tree to the biogeographic-region scale) on cavity density in a meta-analysis of 103 published studies. The global median density of cavities was 16 ha−1, with densities highest in Australasia and lowest in the Palaearctic region. Two major factors influencing density were identified: cavity density was positively related to the amount of precipitation, and was higher in natural than in managed forests. These effects suggest that the distribution of tree cavities largely reflects the incidence of fungal heart-rot in trees, and that forest management, by affecting wood decay processes, can have a broad-scale impact on tree microhabitat availability. Although air temperature, forest composition and wood hardness had suggestive univariate effects, neither these variables nor biogeographic region explained any additional variation in multifactor models. In regions where woodpeckers are present there was an upper limit to the density of woodpecker-excavated cavities (approximately 10-20 cavities ha−1) that was considerably lower than the highest total cavity densities encountered (up to 140 ha−1). This indicates that primary cavity-nesters are particularly important keystone species in cavity-poor forests where wood decay processes are suppressed either climatically or by forest management.  相似文献   

2.
Cocoa cultivation is generally considered to foster deforestation. Contrary to this view, in the forest–savannah interface area in Cameroon, farmers have planted cocoa agroforestry systems on Imperata cylindrica grasslands, a soil-climate zone generally considered unsuitable for cocoa cultivation. We undertook a survey to understand the agricultural and ecological bases of this innovation. Age, cropping history and marketable cocoa yield were assessed in a sample of 157 cocoa plantations established on grasslands and 182 cocoa plantations established in gallery forests. In a sub-sample of 47 grassland cocoa plantations, we inventoried tree species associated with cocoa trees and measured soil organic matter levels. Marketable cocoa yields were similar for the two types of cocoa plantations, regardless of their age: 321?kg?ha?1 in cocoa plantations on grasslands and 354?kg?ha?1 in cocoa plantations in gallery forests. Two strategies were used by farmers to eliminate I. cylindrica prior to the establishment of cocoa plantations, i.e., cropping oil palms in dense stands and planting annual crops. Farmers then planted cocoa trees and fruit tree species, while preserving specific forest trees. The fruit tree and forest tree densities respectively averaged 223 and 68 trees?ha?1 in plantations under 10?years old, and 44 and 27 trees?ha?1 in plantations over 40?years old, whereas the cocoa tree density remained stable at 1,315 trees?ha?1. The Shannon–Weaver index increased from 1.97 to 2.26 over the same period although the difference was not statistically significant. The soil organic matter level was 3.13?% in old cocoa plantations, as compared to 1.7?% in grasslands. In conclusion, our results show that the occupation of grasslands by cocoa agroforestry systems is both an important example of ecological intensification and a significant farmer innovation in the history of cocoa growing.  相似文献   

3.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

4.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

5.
Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg)?C ha?1 with a mean of 127.6?±?6.6 (SE)?Mg?C ha?1. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7?±?32.1?Mg?C?ha?1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.  相似文献   

6.
We construct dry weight equations for hybrid aspen growing on former farmland in Sweden. Dry weight equations for fractions of hybrid aspen trees were also made. We estimated biomass production in 24 stands. The stands were located in Sweden at latitudes ranging from 55 to 60o N. The mean age was 18 years (range 15-23), the mean stand density 1090 stems·ha-1 (range 378 2374), and the mean diameter at breast height (over bark) 178 mm (range 85 244 mm). Soil types in the hybrid aspen stands were mainly clay (21 stands), tills (2 stands) and other (1 stand). The mean total standing dry weight above stump level (≈ 200 mm) for the hybrid aspen stands was 135±53 t·ha-1 with a range of 42 219 t·ha-1 . In addition to estimating conventional dry weights of trees and tree components, basic density, specific leaf area (SLA), projected leaf area (PLA) and leaf area index (LAI) were estimated and were in agreement with published figures.  相似文献   

7.
  • ? In the 1940s–1950s, large limba (Terminalia superba Engl. & Diels) plantations were established in the Democratic Republic of Congo to reduce the pressure on the natural forests.
  • ? The objective of this study was to evaluate the potential of these long-rotation plantations as production forests (timber) and carbon sinks.
  • ? Five different plantations, between 50 and 58 years old, were sampled. Over a sample surface of more than 73 ha, the diameter above buttresses of 2 680 trees, bole height of 265 trees and tree height of 128 trees was measured.
  • ? To estimate the commercial volume, a nonlinear power law regression was used (R 2 = 0.95). A power law variance function was applied to counter heteroscedasticity of the residual plot. Estimates of commercial tree and stand volume at 50 to 58 y were 5.6 ± 4.1 m3 and 183.9 ± 135.0 m3 ha?1. Stand volumes appear low but are explained by a large decrease in tree density. However, the mean volume increment of 3.2–3.7 m3 ha?1 y?1 corresponds well with teak plantations of a similar age. For limba, aboveground biomass and carbon estimates of this study (resp. 108.4 and 54.2 Mg ha?1) differ significantly from those of existing aboveground biomass models (resp. 135.7–143.9 Mg ha?1 biomass and 67.9–72.0 Mg ha?1 C). All aboveground biomass and carbon estimates for T. superba stands were lower than for the estimates of young fast-growing plantations like Tectona grandis L. f., Eucalyptus spp. and Acacia spp. (≤ 30 y).
  •   相似文献   

    8.
    Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha?1, (168.26±9.04) Mg·ha?1 and (84.13±4.18) Mg·ha?1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha?1 and 774.77 Mg·ha?1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha?1 and ranged from (144.97±11.98) m3·ha?1 for Pinus wallichiana to (7.78±1.78) m3·ha?1 for Benthamidia capitata.  相似文献   

    9.
    Abstract

    The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

    10.
    Forest pasturing of livestock in Norway: effects on spruce regeneration   总被引:1,自引:0,他引:1  
    Forest pasturing of free-roaming livestock is a common practice in many parts of the world, but knowledge on how it affects tree regeneration in boreal forests is lacking. We mapped tree density, livestock site use and accumulated damage to young trees of commercial interest(Norway spruce, Picea abies L. Karst.) on 56 clearcuts inside and outside a fenced forest area used for livestock pasturing in Ringsaker, Norway. Inside the fence 56±1.8% of spruce trees were damaged compared to 37±3.4% outside. Proportion of damaged spruce trees was positively related to cattle use of the clearcut, but not so for sheep. On the most intensively used clearcuts, four out of five trees were damaged. The density of deciduous trees was five times lower inside compared to outside of the fence(varying with plant species). While livestock grazing may reduce resource competition in favour of spruce, the current animal density clearly is impeding forest regeneration in the study area.  相似文献   

    11.
    ABSTRACT

    Logging operations in Cameroon are based on the extraction of wood from natural forests. In this article, we assessed the carbon stock in a forest management unit (FMU) located in East Cameroon from field inventory to postfelling operations up to sawmill and export terminals. Tree basal area and aboveground biomass were calculated based on trees inventoried in the annual allowable cut. We observed that from an exploitable tree potential of 0.696 trees ha?1 inventoried within a diameter range of 50–110 cm, 0.141 tree ha?1 (i.e., 20% of the inventoried trees) were logged. In other words, out of 6.78 tC ha?1 inventoried, 1.84 tC ha?1 (i.e., 27% was logged), 1.62 tC ha?1 arrived in the log yard and 1.3 tC ha?1 arrived in sawmill, while 0.32 tC ha?1 reached the export terminal. In terms of damages caused on vegetation, 4.45% of all the annual allowance cut (AAC) were affected during logging activities, this represents almost 33,188.07 tons of carbon. These findings show that the implementation of reduced-impact logging (RIL) could reduce these losses throughout the logging steps and help propose a process for the valuation of wood waste in the forest and sawmill. In this context, reducing emissions from deforestation and degradation will be engaged with the right approach.  相似文献   

    12.
    The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

    13.
    Mangroves offer a number of ecosystem goods and services, including carbon (C) storage. As a carbon pool, mangroves could be a source of CO2 emissions as a result of human activities such as deforestation and forest degradation. Conversely, mangroves may act as a CO2 sink through biomass accumulation. This study aimed to determine carbon stocks, harvest removals and productivity of mangrove forests of mainland Tanzania. Nine species were recorded in mainland Tanzania, among them Avicennia marina (Forssk.) Vierh., Rhizophora mucronata Lam. (31%) and Ceriops tagal (Perr.) C.B.Rob. (20%) were dominant. The aboveground, dead wood, belowground and total carbon were 33.5 ± 5.8 Mg C ha?1, 1.2 ± 1.1 (2% of total carbon), 30.0 ± 4.5 Mg C ha?1 (46% of total carbon) and 64.7 ± 8.4 Mg C ha?1 at 95% confidence level, respectively. Carbon harvest removals accounted for loss of about 4% of standing total carbon stocks annually. Results on the productivity of mangrove forests (using data from permanent sample plots monitored for four years [1995-1998]) showed an overall carbon increment of 5.6 Mg C ha?1 y?1 (aboveground carbon), 4.1 C ha?1 y?1 (belowground carbon) and 9.7 C ha?1 y?1 (total carbon) at 23%, 32% and 27% levels of uncertainty, respectively. Both natural death and tree cutting/harvest removals resulted in significant decline of annual carbon productivity. Findings from this study demonstrate that mangroves store large quantities of carbon and are more productive than other dominant forest formations in southern Africa. Both their deforestation and forest degradation, therefore, is likely to contribute to large quantities of emission and loss of carbon sink functionality. Therefore, mangroves need to be managed sustainably.  相似文献   

    14.
    Quantitative assessment of tree species diversity from sample plots in seven forest ranges of Nayagarh Forest Division in Odisha state in the Eastern Ghats of India was made during the period April, 2011 to November, 2013. A total of 120 transects(1000 m × 5 m) were laid in Nayagarh, Odogaon, Pancharida, Khandapada, Dasapalla,Mahipur, and Gania forest ranges and tree stems of at least 30 cm GBH were measured. The regeneration potential of trees was assessed from 5 m × 5 m sample plots located within the main transect. A total of 177 tree species belonging to 120 genera and 44 families were recorded from the study area. Shorea robusta, Buchanania lanzan, Lannea coromandelica, Terminalia alata and Cleistanthus collinus were the predominant tree species. The stand density varied in the range of 355.33–740.53 stems h~a)-1) while basal area ranged from 7.77 to 31.62 m~2 ha~(-1). The tree density and species richness decreased with increasing girth class. The highest number of species and maximum density was recorded in the girth class of 30–60 cm. The Shannon–Weiner and Simpson Indices with respect to trees with C30 cm GBH varied in the range of 2.07–3.79 cm and 0.03–0.37 cm respectively and the values of diversity indices are within the reported range for tropical forests of Indian sub-continent. The families, Dipterocarpaceae,Anacardiaceae, Combretaceae and Euphorbiaceae contributed to maximum species richness, stand density, and basal area. Regeneration of many tree species was observed to be poor. The present study provides baseline data for further ecological studies, forest management, and formulation of site-specific strategies for conservation of biological diversity in moist deciduous forests of Eastern India.  相似文献   

    15.
    Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

    16.

    Context

    Recruitment is an important process in forest stand dynamics, especially in uneven-aged stands. Continuous recruitment is a prerequisite for diverse, uneven-aged silvicultural systems, but patterns may vary significantly.

    Aims

    The main goals of the study were to examine the recruitment of the main tree species in selection and irregular shelterwood stands in silver fir?CEuropean beech?CNorway spruce forests and to determine the main predictors of the recruitment occurrence.

    Methods

    Data from 5,486 permanent inventory plots were used to study recruitment of saplings into the tree layer (diameter at breast height ??10?cm).

    Results

    Recruitment rate differed significantly between selection (7.6?trees?ha?1?year?1) and irregular shelterwood (26.1?trees?ha?1?year?1) stands. Shade-tolerant fir and beech recruited with higher probability in selection stands, while light-dependent sycamore recruited with higher probability in irregular stands. In addition, forest types, soil pH, stand basal area, mean diameter, and the basal area of the same tree species with respect to recruitment were found to be important predictors of recruitment occurrence.

    Conclusions

    The application of different uneven-aged silvicultural systems and their forms makes it possible to considerably influence the future tree species composition of uneven-aged forests.  相似文献   

    17.
    We derived a formula for estimating the relationship between stem carbon weight and stem volume, which was calculated from DBH and tree height using a combination of stem analysis and soft X-ray densitometry. The results indicate carbon weight in a 33-year-old coastal Japanese black pine (Pinus thunbergii) forest is approximately 68,186 kg ha?1 in Yamagata Prefecture and 38,253 kg ha?1in a 42-year-old black pine forest in Hokkaido Prefecture, Japan. Also, age-related changes in the stem density following oven-drying of samples of black pine trees are small: the oven-dried density (hereafter “density”) of black pine trees in the two locations mentioned above were 425.6 (kg m?3) and 523.2 (kg m?3) respectively, which is comparable to the density (converted from basic density) of black pine of Land Use, Land-Use Change and Forestry (LULUCF) (533 kg m?3). When compared with the carbon weight by the oven-dried density of LULUCF, the carbon weights calculated from each density were 27 % lower in Yamagata and 6 % lower in Hokkaido. This difference directly affects carbon weight for large-scale estimation and thus can create an error at a regional scale. This methodology can contribute to the management of forests acting as carbon sinks.  相似文献   

    18.
    We assessed: (1) the relative importance of different macro- and microhabitat characteristics for explaining the occurrence of tree cavities and their occupancy by hole-nesting passerines and (2) the role of woodpeckers as keystone species in riverine aspen and birch stands in central Estonia. In 1999–2003, multiple surveys were carried out in 16 stands with a total area of 104 ha. Of the 713 tree-holes found, 483 were considered suitable for secondary cavity-nesters. The mean density was 4.1 ± 3.0 (S.D.) suitable cavities ha−1 (including 2.0 ± 1.3 suitable for hole-nesting passerines). Woodpeckers had excavated 88% of suitable cavities. The density of breeding woodpeckers explained 78% of variance in the density of woodpecker-excavated cavities (mean = 28 holes per pair) and 51% of natural cavities. Woodpecker-excavated and natural cavities occurred in very similar conditions, determined mostly by tree species, decay and size, stand type, as well as the vicinity of other cavities. Ninety-six of 161 occupancy cases of cavities were by passerines, which – probably to reduce the risk of nest predation or physical destruction – preferred small natural cavities in live trees. We conclude that riverine areas are important centres of cavity supply in forested regions and the value of woodpeckers as keystone species comes mostly from the large quantity, but not quality, of the cavities they provide. The results imply that: (1) for cavity-nesters, large (DBH > 30 cm) broadleaved trees, both live and dead, are the most important to retain during forestry operations in hemiboreal riverine forests and (2) woodpecker censuses may indicate cavity abundance, particularly if woodpecker-holes dominate among all cavities.  相似文献   

    19.
    《Southern Forests》2013,75(4):311-318
    Average wood density of 38-year-old Cariniana legalis (Mart.) Kuntze, a Brazilian native forest species, was found to increase with faster growth and lower stocking, while decreasing from pith to bark. A complete randomised block design was planted with five blocks. Ten trees were harvested in each of three spacing treatments. We hypothesised that the stand stemwood production would not significantly differ depending on tree spacing. However, tree growth would be higher in the wider spacing and wood density would be higher in the narrower spacing. The diameter growth of trees was higher at 3 m × 2.5 m than at 3 m × 2 m and 3 m × 1.5 m. Nevertheless, this higher individual tree growth at 3 m × 2.5 m did not compensate for the greater tree stock density at 3 m × 1.5 m with stand stemwood production at 38 years of 530 m3 ha?1 and 649 m3 ha?1, respectively. These results suggest that C. legalis, which can produce up to 17 m3 ha?1 y?1 of medium-to high-density timber – about 800 kg m?3 – is a promising native species for forest plantations in Brazil.  相似文献   

    20.
    Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号