首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nuclear factor (NF)-κB is a primary regulator of inflammatory responses and may be linked to pathology associated with obesity. We investigated the progression of NF-κB activity during a 12-week feeding period on a high-fat diet (HFD) or a low-fat diet (LFD) using NF-κB luciferase reporter mice. In vivo imaging of luciferase activity showed that NF-κB activity was higher in the HFD mice compared with LFD-fed mice. Thorax region of HFD females displayed fourfold higher activity compared with LFD females, while no such increase was evident in males. In male HFD mice, abdominal NF-κB activity was increased twofold compared with the LFD males, while females had unchanged NF-κB activity in the abdomen by HFD. HFD males, but not females, exhibited evident glucose intolerance during the study. In conclusion, HFD increased NF-κB activity in both female and male mice. However, HFD differentially increased activity in males and females. The moderate increase in abdomen of male mice may be linked to glucose intolerance.  相似文献   

3.
To determine whether long-term melanocortinergic activation can attenuate the metabolic effects of a high fat diet, mice overexpressing an NH(2)-terminal POMC transgene that includes alpha- and gamma(3)-MSH were studied on either a 10% low-fat diet (LFD) or 45% high-fat diet (HFD). Weight gain was modestly reduced in transgenic (Tg-MSH) male and female mice vs. wild type (WT) on HFD (P < 0.05) but not LFD. Substantial reductions in body fat percentage were found in both male and female Tg-MSH mice on LFD (P < 0.05) and were more pronounced on HFD (P < 0.001). These changes occurred in the absence of significant feeding differences in most groups, consistent with effects of Tg-MSH on energy expenditure and partitioning. This is supported by indirect calorimetry studies demonstrating higher resting oxygen consumption and lower RQ in Tg-MSH mice on the HFD. Tg-MSH mice had lower fasting insulin levels and improved glucose tolerance on both diets. Histological and biochemical analyses revealed that hepatic fat accumulation was markedly reduced in Tg-MSH mice on the HFD. Tg-MSH also attenuated the increase in corticosterone induced by the HFD. Higher levels of Agrp mRNA, which might counteract effects of the transgene, were measured in Tg-MSH mice on LFD (P = 0.02) but not HFD. These data show that long-term melanocortin activation reduces body weight, adiposity, and hepatic fat accumulation and improves glucose metabolism, particularly in the setting of diet-induced obesity. Our results suggest that long-term melanocortinergic activation could serve as a potential strategy for the treatment of obesity and its deleterious metabolic consequences.  相似文献   

4.
Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function.  相似文献   

5.
Consumption of a high-fat diet (HFD) is associated with white adipose tissue (WAT) inflammation, which contributes to key components of the metabolic syndrome, including insulin resistance (IR) and hepatic steatosis (HS). To determine the differential effects of exercise training (EX), low-fat diet (LFD), and their combination on WAT inflammation, Balb/cByJ male mice (n = 34) were fed an HFD for 12 wks before they were randomized into one of four intervention groups: HFD-EX, LFD-EX, HFD-sedentary (SED), or LFD-SED. EX mice performed 12 wks of exercise training on a motorized treadmill (1 h/d, 5 d/wk, 12 m/min, 5% grade, 65% VO2 max), while SED mice remained sedentary in their home cages. WAT gene expression of adipokines was assessed using rt-PCR. IR was measured using HOMA-IR, and HS via hepatic triglyceride content. EX significantly reduced (53%) WAT gene expression of MCP-1, and LFD significantly reduced (50%) WAT gene expression of the macrophage specific marker, F4/80 as well as the adipocytokine IL-1ra (25%). EX independently improved IR, while both EX and LFD improved HS. These findings suggest that both diet and exercise have unique beneficial effects on WAT inflammatory markers and the mechanism by which each treatment improves metabolic complications associated with chronic consumption of an HFD may be different.  相似文献   

6.

Background

To examine the circulating microRNA (miRNA) expression profile in a mouse model of diet-induced obesity (DIO) with subsequent weight reduction achieved via low-fat diet (LFD) feeding.

Results

Eighteen C57BL/6NCrl male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal %) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal % high-fat diet (HFD) for 12 weeks; and (3) DIO + LFD, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal % LFD for 4 weeks. A switch to LFD feeding led to decreases in body weight, adiposity, and blood glucose levels in DIO mice. Microarray analysis of miRNA using The Mouse & Rat miRNA OneArray® v4 system revealed significant alterations in the expression of miRNAs in DIO and DIO + LFD mice. Notably, 23 circulating miRNAs (mmu-miR-16, mmu-let-7i, mmu-miR-26a, mmu-miR-17, mmu-miR-107, mmu-miR-195, mmu-miR-20a, mmu-miR-25, mmu-miR-15b, mmu-miR-15a, mmu-let-7b, mmu-let-7a, mmu-let-7c, mmu-miR-103, mmu-let-7f, mmu-miR-106a, mmu-miR-106b, mmu-miR-93, mmu-miR-23b, mmu-miR-21, mmu-miR-30b, mmu-miR-221, and mmu-miR-19b) were significantly downregulated in DIO mice but upregulated in DIO + LFD mice. Target prediction and function annotation of associated genes revealed that these genes were predominantly involved in metabolic, insulin signaling, and adipocytokine signaling pathways that directly link the pathophysiological changes associated with obesity and weight reduction.

Conclusions

These results imply that obesity-related reductions in the expression of circulating miRNAs could be reversed through changes in metabolism associated with weight reduction achieved through LFD feeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1896-3) contains supplementary material, which is available to authorized users.  相似文献   

7.
Restriction of a high-fat diet (HFD) and a change to a low-fat diet (LFD) are two interventions that were shown to promote weight loss and improve parameters of metabolic health in obesity. Examination of the biochemical and molecular responses of white adipose tissue (WAT) to these interventions has not been performed so far. Here, male C57BL/6JOlaHsd mice, harboring an intact nicotinamide nucleotide transhydrogenase gene, were fed a purified 40 energy% HFD for 14 weeks to induce obesity. Afterward, mice were divided into three dietary groups: HFD (maintained on HFD), LFD (changed to LFD with identical ingredients), and HFD-CR (restricted to 70 % of the HFD). The effects of the interventions were examined after 5 weeks. Beneficial effects were seen for both HFD-CR and LFD (compared to HFD) regarding physiological parameters (body weight and fat mass) and metabolic parameters, including circulating insulin and leptin levels. Macrophage infiltration in WAT was reduced by both interventions, although more effectively by HFD-CR. Strikingly, molecular parameters in WAT differed between HFD-CR and LFD, with increased activation of mitochondrial carbohydrate and fat metabolism in HFD-CR mice. Our results confirm that restriction of the amount of dietary intake and reduction in the dietary energy content are both effective in inducing weight loss. The larger decrease in WAT inflammation and increase in mitochondrial carbohydrate metabolism may be due to a larger degree of energy restriction in HFD-CR, but could also be due to superior effectiveness of dietary restriction in weight loss strategies.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0391-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP) and blood clearance (ApoC2). These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG), while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the reported association of CD36 variants with MetS risk.  相似文献   

9.
10.
Zinc plays a role in alleviating oxidative stress. However, the related mechanisms remain to be further elucidated. The present study was conducted to investigate whether the recovery of oxidative stress in high-fat-diet (HFD)-pretreated mice was affected by zinc. Male mice received either an HFD or a low-fat-diet (LFD) for 8 weeks. Then, the mice fed with HFD and LFD were both assigned to either a control diet (30 mg zinc, ZD) or a no-added zinc diet (NZD) for an additional 4 weeks. The results showed that after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest plasma glucose and insulin concentrations, while had the lowest CuZn-SOD and glutathione concentrations. Moreover, after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest hepatic ROS and homocysteine concentrations, while had the lowest glutathione and methionine concentrations. Furthermore, the HFD-pretreated mice fed with NZD for 4 weeks had the lowest gene and protein expression of betaine homocysteine-S-methyltransferase (BHMT), cystathionine β-synthase, and Sp1. The results suggested that zinc was critical for oxidative stress alleviation and homocysteine clearance in HFD-pretreated mice. It was further elucidated that improved Sp1 and BHMT expression are involved in the effects of zinc on oxidative stress.  相似文献   

11.

Background

Impaired insulin signalling is increasingly thought to contribute to Alzheimer''s disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.

Methods

Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.

Results

All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.  相似文献   

12.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

13.
Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox?/? mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox?/? mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox?/? mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox?/? mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.  相似文献   

14.
15.
Olanzapine is effective to treat for schizophrenia and other mood disorders, but limited by side effects such as weight gain, dyslipidemia, and liver injury. Obesity in the US is at epidemic levels, and is a significant risk factor for drug-induced liver injury. Obesity incidence in the psychiatric population is even higher than in the US population as a whole. The purpose of this study was to test the hypothesis that obesity worsens olanzapine-induced hepatic injury, and to investigate the potential protective effects of sulforaphane. 8-week old female C57BL/6 mice were fed either a high-fat or low-fat control diet (HFD and LFD). Mice also received either olanzapine (8 mg/kg/d) or vehicle by osmotic minipump for 4 weeks. A subset of mice in the HFD + olanzapine group was administered sulforaphane, a prototypical Nrf2 inducer (90 mg/kg/d). Olanzapine alone increased body weight, without a commensurate increase in food consumption. Olanzapine also caused hepatic steatosis and injury. Combining olanzapine and HFD caused further dysregulation of glucose and lipid metabolism. Liver damage from concurrent HFD and olanzapine was worse than liver damage from high-fat diet or olanzapine alone. Sulforaphane alleviated many metabolic side effects of olanzapine and HFD. Taken together, these data show that olanzapine dysregulates glucose and lipid metabolism and exacerbates hepatic changes caused by eating a HFD. Activation of the intrinsic antioxidant defense pathway with sulforaphane can partially prevent these effects of olanzapine and may represent a useful strategy to protect against liver injury.  相似文献   

16.
With the worldwide epidemic of metabolic syndrome (MetS), the proportion of women that are overweight/obese and overfed during pregnancy has increased. The resulting abnormal uterine environment may have deleterious effects on fetal metabolic programming and lead to MetS in adulthood. A balanced/restricted diet and/or physical exercise often improve metabolic abnormalities in individuals with obesity and type 2 diabetes mellitus (T2D). We investigated whether reducing fat intake during the periconceptual/gestation/lactation period in mothers with high-fat diet (HFD)-induced obesity could be used to modify fetal/neonatal MetS programming positively, thereby preventing MetS. First generation (F1) C57BL/6J female mice with HFD-induced obesity and T2D were crossed with F1 males on control diet (CD). These F1 females were switched to a CD during the periconceptual/gestation/lactation period. At weaning, both male and female second generation (F2) mice were fed a HFD. Weight, caloric intake, lipid parameters, glucose, and insulin sensitivity were assessed. Sensitivity/resistance to the HFD differed significantly between generations and sexes. A similar proportion of the F1 and F2 males (80%) developed hyperphagia, obesity, and T2D. In contrast, a significantly higher proportion of the F2 females (43%) than of the previous F1 generation (17%) were resistant (P<0.01). Despite having free access to the HFD, these female mice were no longer hyperphagic and remained lean, with normal insulin sensitivity and glycemia but mild hypercholesterolemia and glucose intolerance, thus displaying a "satiety phenotype." This suggests that an appropriate dietary fatty acid profile and intake during the periconceptual/gestation/lactation period helps the female offspring to cope with deleterious intrauterine conditions.  相似文献   

17.
18.
The aim was to determine the effect of consuming a baked white corn/bean snack (70/30% blend) on improving diet-induced dyslipidemia and liver differential gene expression in mice fed a high-fat diet (HFD). C57BL/6 mice were randomized into six groups and different doses of the snack (0.5–2.0 g/d) supplemented to a basal HFD for 12 weeks. Unsupplemented HFD and a standard diet were used as positive and negative controls, respectively. Groups receiving HFD1.0, HFD1.5 and HFD2.0 showed attenuation in body weight gain (20%). Serum cholesterol and triglycerides were reduced (P<.05), 29% and 31%, respectively. Blood glucose was also reduced (P<.05) in all groups receiving the snack. Histological analysis showed a reduction in adipocyte diameters (P<.05) suggesting an attenuation of lipid accumulation. Snack consumption induced differential expression of 529 genes in the liver; RGS16 was the highest up-regulated molecule (+15-fold change). Increased expression of this gene could have improved glucose metabolism in HFD2.0. Ingenuity Pathway Analysis downstream analysis showed a predicted inhibition of target genes of peroxisome PPARγ and key regulators of lipogenic genes in the liver. The results suggest that consumption of a white corn/bean snack (70%/30% blend) attenuates weight gain, fat mass accumulation, adipocyte size and nonalcoholic fatty liver disease in HFD-fed mice by inhibiting PPARγ and SREBF2. The study proposes that this type of product might be beneficial by preventing dyslipidemia, obesity and hepatic steatosis.  相似文献   

19.

Background

Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a “legacy” effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.

Methodology

As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.

Principal Findings

Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.

Conclusion/Interpretation

Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control.  相似文献   

20.
BackgroundThe objective of this study was to identify interaction effects between diet, sex, and strain on trace element dysregulation and gene expression alterations due to diet-induced obesity (DIO) in the hippocampus, striatum, and midbrain.MethodsMale and female C57BL/6 J (B6 J) and DBA/2 J (D2 J) mice were fed either a low fat (10 % kcal) diet (LFD) or high fat (60 % kcal) diet (HFD) for 16 weeks, then assessed for trace element concentrations and gene expression patterns in the brain.ResultsIn the hippocampus, zinc was significantly increased by 48 % in D2 J males but decreased by 44 % in D2 J females, and divalent metal transporter 1 was substantially upregulated in B6 J males due to DIO. In the striatum, iron was significantly elevated in B6 J female mice, and ceruloplasmin was significantly upregulated in D2 J female mice due to DIO. In the midbrain, D2 J males fed a HFD had a 48 % reduction in Cu compared to the LFD group, and D2 J females had a 37 % reduction in Cu compared to the control group.ConclusionsThe alteration of trace element homeostasis and gene expression due to DIO was brain-region dependent and was highly influenced by sex and strain. A significant three-way interaction between diet, sex, and strain was discovered for zinc in the hippocampus (for mice fed a HFD, zinc increased in male D2 Js, decreased in female D2 Js, and had no effect in B6 J mice). A significant diet by sex interaction was observed for iron in the striatum (iron increased only in female mice fed a HFD). A main effect of decreased copper in the midbrain was found for the D2 J strain fed a HFD. These results emphasize the importance of considering sex and genetics as biological factors when investigating potential associations between DIO and neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号