首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Based on the results of in vitro studies of many experimental models, a silicone hollow fiber membrane oxygenator for pediatric cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber with a 300 microm outer diameter and a wall thickness of 50 microm. In this study, we evaluated the gas transfer performance of this oxygenator simulating pediatric CPB and ECMO conditions. Two ex vivo studies in a pediatric CPB condition for 6 h and 5 ex vivo studies in an ECMO condition for 1 week were performed with venoarterial bypass using healthy calves. At a blood flow rate of 2 L/min and V/Q = 4 (V = gas flow rate, Q = blood flow rate) (pediatric CPB condition), the O2 and CO2 gas transfer rates were maintained at 97.44 +/- 8.88 (mean +/- SD) and 43.59 +/- 15.75 ml/min/m2, respectively. At a blood flow rate of 1 L/min and V/Q = 4 (ECMO condition), the O2 and CO2 gas transfer rates were maintained at 56.15 +/- 8.49 and 42.47 +/- 9.22 ml/min/m2, respectively. These data suggest that this preclinical silicone membrane hollow fiber oxygenator may be acceptable for both pediatric CPB and long-term ECMO use.  相似文献   

2.
Based on the results of many experimental models, a hollow fiber silicone membrane oxygenator applicable for long-term extracorporeal membrane oxygenation (ECMO) was developed. For further high performance and antithrombogenicity, this preclinical model was modified, and a new improved oxygenator was successfully developed. In addition to ECMO application, the superior biocompatibility of silicone must be advantageous for pediatric cardiopulmonary bypass (CPB). An ex vivo short-term durability test for pediatric CPB was performed using a healthy miniature calf for six hours. Venous blood was drained from the left jugular vein of a calf, passed through the oxygenator and infused into the left carotid artery using a Gyro C1E3 centrifugal pump. For six hours, the O2 and CO2 gas transfer rates were maintained around 90 and 80 ml/min at a blood flow rate of 2 L/min and V/Q=3, respectively. The plasma free hemoglobin was maintained around 5 mg/dl. These data suggest that this newly improved oxygenator has superior efficiency, less blood trauma, and may be suitable for not only long-term ECMO but also pediatric CPB usage.  相似文献   

3.
Two types small and efficient ECMO oxygenators were developed utilizing the most up to date hollow fiber technology. Newly silicone hollow fibers possess sufficient mechanical strength while maintaining ultra thin walls of 50 micro meter. Two types of oxygenators were made with this fiber. The fiber length for the type 1 module is 150mm with a priming volume 194 cc (surface area 1.3 m(2)) and type 2 has a fiber length of 100 mm with a 144 cc priming volume (the surface area 0.8 m(2)). The studies were performed at 0.5, 1.0 and 2.0 L/min of blood flow and these oxygenators demonstrated. O(2) gas transfer rate of 69+/-4 ml/min/L for type 1 and 68+/-6 ml/min/L for type 2. The CO(2) gas transfer rate was 25+/-2 ml/min/L for type 1 and 32+/-2 ml/min/L for type 2. These results demonstrate type 2 oxygenator has similar gas exchange capabilities to those of Kolobows' oxygenator which has about 2.0 times larger surface area. Additionally, comparative hemolysis tests were preformed with this new oxygenator and the Kolbow. The NIH value was 0.006 (g/100 L) for the type 1 oxygenator and 0.01 (g/100 L) for the Kolbow oxygenator. These results suggested that this ECMO oxygenator had sufficient gas exchange performance in spite of being smaller and induced minimal blood damage.  相似文献   

4.
Extracorporeal membrane oxygenator compatible with centrifugal blood pumps   总被引:1,自引:0,他引:1  
Coil-type silicone membrane oxygenators can only be used with roller blood pumps due to the resistance from the high blood flow. Therefore, during extracorporeal membrane oxygenation (ECMO) treatment, the combination of a roller pump and an oxygenator with a high blood flow resistance will induce severe hemolysis, which is a serious problem. A silicone rubber, hollow fiber membrane oxygenator that has a low blood flow resistance was developed and evaluated with centrifugal pumps. During in vitro tests, sufficient gas transfer was demonstrated with a blood flow less than 3 L/min. Blood flow resistance was 18 mm Hg at 1 L/min blood flow. This oxygenator module was combined with the Gyro C1E3 (Kyocera, Japan), and veno-arterial ECMO was established on a Dexter strain calf. An ex vivo experiment was performed for 3 days with stable gas performance and low blood flow resistance. The combination of this oxygenator and centrifugal pump may be advantageous to enhance biocompatibility and have less blood trauma characteristics.  相似文献   

5.
Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers.  相似文献   

6.
Development of silicone rubber hollow fiber membrane oxygenator for ECMO   总被引:6,自引:0,他引:6  
Silicone rubber hollow fiber membrane produces an ideal gas exchange for long-term ECMO due to nonporous characteristics. The extracapillary type silicone rubber ECMO oxygenator having an ultrathin hollow fiber membrane was developed for pediatric application. The test modules were compared to conventional silicone coil-type ECMO modules. In vitro experiments demonstrated a higher O2 and CO2 transfer rate, lower blood flow resistance, and less hemolysis than the conventional silicone coil-type modules. This oxygenator was combined with the Gyro C1E3 centrifugal pump, and three ex vivo experiments were conducted to simulate pediatric V-A ECMO condition. Four day and 6 day experiments were conducted in cases 1 and 2, respectively. Case 3 was a long-term experiment up to 2 weeks. No plasma leakage and stable gas performances were achieved. The plasma free hemoglobin was maintained within a normal range. This compact pump-oxygenator system in conjunction with the Gyro C1E3 centrifugal pump has potential for a hybrid total ECMO system.  相似文献   

7.
The most common technical complication during ECMO is clot formation. A large clot inside a membrane oxygenator reduces effective membrane surface area and therefore gas transfer capabilities, and restricts blood flow through the device, resulting in an increased membrane oxygenator pressure drop (dpMO). The reasons for thrombotic events are manifold and highly patient specific. Thrombus formation inside the oxygenator during ECMO is usually unpredictable and remains an unsolved problem. Clot sizes and positions are well documented in literature for the Maquet Quadrox‐i Adult oxygenator based on CT data extracted from devices after patient treatment. Based on this data, the present study was designed to investigate the effects of large clots on purely technical parameters, for example, dpMO and gas transfer. Therefore, medical grade silicone was injected into the fiber bundle of the devices to replicate large clot positions and sizes. A total of six devices were tested in vitro with silicone clot volumes of 0, 30, 40, 50, 65, and 85 mL in accordance with ISO 7199. Gas transfer was measured by sampling blood pre and post device, as well as by sampling the exhaust gas at the devices’ outlet at blood flow rates of 0.5, 2.5, and 5.0 L/min. Pre and post device pressure was monitored to calculate the dpMO at the different blood flow rates. The dpMO was found to be a reliable parameter to indicate a large clot only in already advanced “clotting stages.” The CO2 concentration in the exhaust gas, however, was found to be sensitive to even small clot sizes and at low blood flows. Exhaust gas CO2 concentration can be monitored continuously and without any risks for the patient during ECMO therapy to provide additional information on the endurance of the oxygenator. This may help detect a clot formation and growth inside a membrane oxygenator during ECMO even if the increase in dpMO remains moderate.  相似文献   

8.
Silicon hollow fiber membrane oxygenator is considered to be useful for long term extracorporeal membrane oxygenation (ECMO) and blood usually flows inside of the fiber (inside flow type). But if it flows outside of the fiber (outside flow type), the pressure drop is supposed to be less than that of inside flow type. In this study the oxygenator of an outside flow type was used. At first, the pilot study was done to evaluate the capability of this oxygenator as an outside flow type. The pressure drop was 50 mmHg at the blood flow of 400 ml.min-1. At this blood flow and same gas flow, CO2 transfer rate was 22.3 ml.min-1. In the second study, the effects of pumpless arterio-venous ECMO (pumpless A-V ECMO) were studied in 8 dogs under mechanical hypoventilation. During ECMO, there were no significant changes in hemodynamics when the blood flow rate was 15% of cardiac output. PaO2 and PaCO2 recovered considerably. In conclusion, pumpless A-V ECMO using this membrane oxygenator of outside flow type is effective for CO2 removal and considered to be clinically useful.  相似文献   

9.
To save priming time and perform more rapid initiation of emergency cardiopulmonary bypass for acute cardiopulmonary failure, an extracorporeal circuit with a hollow-fiber oxygenator (EL-2000 for pediatric use; Kurary Co. Ltd., Osaka, Japan) was preprimed, and the gas-exchange function was evaluated after 1 year of storage. EL-2000 has a dense polyolefin membrane with a surface area of 0.3 m2. When the bypass flow rates were 250, 500, 1,000, and 1,500 ml/min with 100% oxygen at the same flow rate as the bypass blood flow (namely, V/Q = 1) to the oxygenator, oxygen transport rates of the stored oxygenator were 19.6 +/- 0.3, 38.3 +/- 0.41, 64.4 +/- 0.9, and 76.4 +/- 2.7 ml/min (n = 5, mean +/- SD), respectively. PCO2 differences between pre- and postoxygenator blood (delta PCO2) were 18.6 +/- 1.4, 12.0 +/- 1.6, and 4.4 +/- 1.2 mm Hg at V/Q = 1 and the same bypass blood flow rates, respectively, excluding 1,500 ml/min, the data for which were excluded because of preparatory failure. PCO2 removal indices (defined as the ratio of delta PCO2 to PCO2 in preoxygenator blood) were 0.45 +/- 0.03, 0.29 +/- 0.12, and 0.10 +/- 0.03, respectively. Though the evaluation was done using only a single oxygenator, we feel strongly that the gas-exchange function of the preprimed dense-membrane hollow fiber oxygenator will be preserved even after 1 year of storage.  相似文献   

10.
In order to facilitate the handling of cardiopulmonary bypass (CPB) and simplify the circuit, we have developed a new membrane oxygenator with a hemofiltration function. The hollow fiber units for gas exchange and hemofiltration were combined in concentric circles in a cylindrical housing. The total priming volume was 190 ml. Because we used a silicon-coated hollow fiber membrane for gas exchange, this oxygenator was completely resistant to serum leakage. The gas exchange and hemofiltration sections both have a blood-outside flow configuration. All blood flows in a radial direction from around the central core to the surrounding hollow fiber units, first to the hemofiltration portion and then to the gas exchange section. Filtered fluid was easily collected through a stopcock mechanism. The oxygen transfer rate was 312 ml/min at a blood flow rate of 6 L/min, and the ultrafiltration rate was 3.5 L/hour at a blood flow rate of 4 L/min with 25% hematocrit and 200 mmHg transmembrane pressure in an in vitro study. The pressure drop was 62 mmHg at a blood flow rate of 4 L/min. We found no adverse effects in an in vivo study using a mongrel dog. In conclusion, this durable combined device could achieve excellent and simplified hemoconcentration by having all the blood in the unit flow through the hemofiltration portion, and may be useful not only in CPB during open heart surgery, but also in extracorporeal membrane oxygenation.  相似文献   

11.
There is little information showing the use of microporous polypropylene hollow fiber oxygenators during extra-corporeal life support (ECLS). Recent surveys have shown increasing use of these hollow fibers amongst ECLS centers in the United States. We performed a retrospective analysis comparing the Terumo BabyRx hollow fiber oxygenator to the Medtronic 800 silicone membrane oxygenator on 14 neonatal patients on extracorporeal membrane oxygenation (ECMO). The aim of this study was to investigate the similarities and differences when comparing pressure drops, prime volumes, oxygenator endurance, and gas transfer capabilities between the two groups.  相似文献   

12.
We have evaluated the feasibility of a newly developed single‐use, magnetically levitated centrifugal blood pump, MedTech Mag‐Lev, in a 3‐week extracorporeal membrane oxygenation (ECMO) study in calves against a Medtronic Bio‐Pump BPX‐80. A heparin‐ and silicone‐coated polypropylene membrane oxygenator MERA NHP Excelung NSH‐R was employed as an oxygenator. Six healthy male Holstein calves with body weights of about 100 kg were divided into two groups, four in the MedTech group and two in the Bio‐Pump group. Under general anesthesia, the blood pump and oxygenator were inserted extracorporeally between the main pulmonary artery and the descending aorta via a fifth left thoracotomy. Postoperatively, both the pump and oxygen flow rates were controlled at 3 L/min. Heparin was continuously infused to maintain the activated clotting time at 200–240 s. All the MedTech ECMO calves completed the study duration. However, the Bio‐Pump ECMO calves were terminated on postoperative days 7 and 10 because of severe hemolysis and thrombus formation. At the start of the MedTech ECMO, the pressure drop across the oxygenator was about 25 mm Hg with the pump operated at 2800 rpm and delivering 3 L/min flow. The PO2 of the oxygenator outlet was higher than 400 mm Hg with the PCO2 below 45 mm Hg. Hemolysis and thrombus were not seen in the MedTech ECMO circuits (plasma‐free hemoglobin [PFH] < 5 mg/dL), while severe hemolysis (PFH > 20 mg/dL) and large thrombus were observed in the Bio‐Pump ECMO circuits. Plasma leakage from the oxygenator did not occur in any ECMO circuits. Three‐week cardiopulmonary support was performed successfully with the MedTech ECMO without circuit exchanges. The MedTech Mag‐Lev could help extend the durability of ECMO circuits by the improved biocompatible performances.  相似文献   

13.
Abstract: A hemoconcentrator is an instrument essential for open heart surgery without blood transfusion. In order to simplify the extracorporeal blood circuit and to facilitate handling of cardiopulmonary bypass, we have combined a hollow fiber unit for gas exchange and that for hemofiltration into one component and developed a new membrane oxygenator with the function of a hemoconcentrator. The cylindrical device consists of a hollow fiber for hemofiltration with another fiber for gas exchange provided outside. Both of them adopt the blood outside perfusion system. Blood enters and flows through the central hole for hemofiltration and then flows into the oxygenator. By applying the flow mode to the device, blood is allowed to flow from the center of the core toward the hollow fiber around it. Therefore, even distribution of blood flow to the entire fiber is realized, and the performance of the device is improved. The oxygen transfer rate was 317 ml/min at a flow rate of 6 L/min, and the ultrafiltration rate was 7 L/h at a flow rate of 4 L/tnin with a hematocrit of 25%. The combined structure of the two units has not caused any adverse effects. In conclusion, by combining an oxygenator and a hemoconcentrator, excellent and simplified hemoconcentration is made available as the blood outside flow mode is adopted, which is one of the unique aspects of this device.  相似文献   

14.
Abstract: A new intravascular pumping oxygenator (IVPO) was developed for intravascular gas exchange and circulatory assistance in critically ill patients with respiratory and circulatory failure. The IVPO utilizes new silicone hollow fibers (diameter. 1 mm: membrane width, 50 μm) and consists of two driving tubes for the oxygenation and pumping of circulating blood. The performance characteristics of the IVPO were studied using an experimental ex vivo model. With a mean hemoglobin concentration of 10.5 ± 2.3 g/dl, total oxygen transfer was 5.6 ± 1.5 ml/min at a blood flow of 200 ml/min and 6.3 ± 2.2 ml/min at a blood flow of 250 ml/min. Total CO2 transfer was 3.8 ± 1.4 ml/min at a blood flow of 200 ml/min and 4.2 ± 1.6 ml/min at a blood flow of 250 ml/min during IVPO pumping. This preliminary experiment demonstrated that the IVPO has the capacity to function both as a circulatory assist pump and as an intravascular hollow fiber oxygenator.  相似文献   

15.
A new hollow fiber membrane oxygenator, the Medtronic Maxima Forté, was tested for gas transfer, blood path resistance and blood handling characteristics in a standardized setting with surviving animals. Three calves (mean body weight: 71 +/- 9.6 kg) were placed on cardiopulmonary bypass at a mean flow rate of 50 ml/kg/min for six hours. The circuit included the Maxima Forté oxygenator. The animals were weaned from cardiopulmonary bypass and then from the ventilator. After seven days, the animals were sacrificed electively. Physiologic blood gas values could be maintained throughout perfusion in all animals. Mean pressure drop through the oxygenator varied between 49 mmHg and 66 mmHg. The respective baseline values for red blood cell count, white blood cell count and platelets were 8.90 +/- 1.26 10(6)/mm3, 7.46 +/- 3.17 10(3)/mm3. and 680 +/- 216 10(3)/mm3. Red blood cell and platelet counts dropped slightly to 7.26 +/- 1.61 10(6)/mm3 and 400 +/- 126 10(3)/mm3 at the end of the bypass, whereas the white blood cell count increased up to 9.13 +/- 5.25 10(3)/mm3. All three cell lines returned to near their baseline values after seven days. Blood trauma evaluated as a function of plasma hemoglobin (plasma Hb) and lactate dehydrogenase (LDH) showed stable values during all the perfusion time. Both peaked at 24 hours before returning to their baseline values at seven days. LDH showed a statistically significant variation: 3255 +/- 693 IU at 24 hours versus 2029 +/- 287 IU at baseline (p = 0.04). The variation of plasma Hb was not statistically significant (93.5 +/- 7.7 mumol/l at 24 hours versus 77.3 +/- 52.3 mumol/l at baseline) indicating a weak effect of the perfusion on blood trauma. The Medtronic Maxima Forté hollow fiber membrane oxygenator offered good gas exchange capabilities, a low pressure drop, and low blood trauma over a prolonged perfusion time of six hours in this evaluation.  相似文献   

16.
A new project is presented, the pumping oxygenator, functionally integrating pulsatile pumping and blood oxygenation in a single device. Solid, semipermeable silicone membranes allow gas exchange and simultaneously transfer energy from pressurized gas to blood thanks to their distensibility and to inlet and outlet 1-way valves. Two small-sized (1 m2 exchange surface area) prototypes were designed, constructed, hydraulically characterized, and subjected to gas transfer evaluation tests. Blood flow rates (Q(b)) up to 1,250 ml/min were obtained with 30 mm Hg static preload and 130 mm Hg afterload with 0.7 m upstream and 2.1 m downstream 3/8 inch pipes. Physiological oxygen transfer (VO2 = 5 ml/dl, ml of transferred O2/dl of treated blood) was delivered at Q(b) < 900 ml/min, about 4 ml/dl at Q(b) = 1,250 ml/min. VO2 also was significantly increased by increasing percent systolic time. CO2 transfer decreased regularly with increasing Q(b) from VCO2 = 4.8 ml/dl at Q(b) = 400 ml/min to VCO 2 = 2.1 ml/dl at Q(b) = 1,250 ml/min. The results confirm the possibility of integrating oxygenation and pulsatile pumping. The pumping oxygenator represents a promising project deserving further improvements.  相似文献   

17.
Abstract: It is acknowledged that pulsatile flow enhances the gas exchange performance of membrane oxygenators. However, the data for currently developed oxygenators are limited. In this study, the effect of pulsatile flow was assessed utilizing the MENOX EL-4000 oxygenator. The in vitro test was performed following the Association for the Advancement of Medical Instrumentation (AAMI) standards. Pulsatile flow was produced by the Gyro C1-E3 centrifugal pump with periodical changing of the impeller speed. In Study 1, the following 3 groups were created and examined: nonpulsatile flow, pulsatile flow of 40 bpm, and pulsatile flow of 60 bpm. The blood flow rate was maintained at 3 LImin, and the VIQ ratio was I. In Study 2, four groups were examined, nonpulsatile flow with V/Q = 1, nonpulsatile with V/Q = 2, pulsatile with VIQ = 1, and pulsatile with V/Q = 2. The blood flow rate was maintained at 4 LImin, and the pulse frequency was set at 40 bpm. In study 1, although 0, transfer was not enhanced. CO2, transfer was significantly improved (40–50%) by pulsatile flow, regardless of pulse frequency. Study 2 demonstrated that pulsatile flow resulted in improved CO2 transfer as did higher ventilation (VIQ = 2). Furthermore, even after applying higher ventilation, the pulsatile mode enhanced CO2 transfer more than the nonpulsatile mode. It was considered that the pulsatile mode induced an active secondary flow and enhanced mixing effects, and consequently CO2 transfer was improved. In conclusion, the pulsatile flow significantly enhanced the CO2 transfer of the MENOX oxygenator. It is indicated that applying the pulsatile mode is a unique and effective method to improve the gas exchange performance for a current membrane oxygenator.  相似文献   

18.
Throughout the last 50 years, many improvements have been made for a more effective oxygenator. A large plate type membrane oxygenator, used by Clowes, and a coil type, used by Kolff, has evolved into the small hollow fiber oxygenator. The complex bubble oxygenator, or rotating disk oxygenator, has become a small disposable bubble oxygenator. The currently available oxygenators are extremely small, efficient, and can be used for extended periods of time. However, there are some problems with extracorporeal membrane oxygenation (ECMO). Currently in the United States, there are no clinically applicable hollow fiber ECMO oxygenators available, in spite of the extended ECMO application. Therefore, the development of a small, yet efficient, silicone hollow fiber membrane oxygenator for long-term ECMO usage was attempted. Based on the results of many experimental models, preclinical oxygenator models for long-term ECMO were developed in our laboratory using an ultra-thin silicone rubber hollow fiber membrane.  相似文献   

19.
Abstract: To assess the effect of an ultrathin (0.2 μm) silicone-coated microporous membrane oxygenator on gas transfer and hemolytic performance, a silicone-coated capillary membrane oxygenator (Mera HP Excelung-prime, HPO-20H-C, Senko Medical Instrument Mfg. Co., Ltd. Tokyo, Japan) was compared with a noncoated polypropylene microporous membrane oxygenator of the same model and manufacturer using an in vitro test circuit. The 2 oxygenators showed little difference in the oxygen (O2) transfer rate over a wide range of blood flow rates (1 L/min to 8 L/min). The carbon dioxide (CO2) transfer rate was almost the same in both devices at low blood flow rates. but the silicone-coated oxygenator showed a decrease of more than 20% in the CO2 transfer rate at higher blood flow rates. This loss in performance could be partly attenuated by increasing the gas/blood flow ratio from 0.5 or 1.0 to 2.0. In the hemolysis study, the silicone-coated membrane oxygenator showed a smaller increase in plasma free hemoglobin than the noncoated oxygenator. The pressure drop across both oxygenators was the same. These results suggest that the ultrathin silicone-coated porous membrane oxygenator may be a useful tool for long-term extracorporeal lung support while maintaining a sufficient gas transfer rate and causing less blood component damage.  相似文献   

20.
In the United States, standardization of neonatal extracorporeal membrane oxygenation (ECMO) circuit was achieved during the 1980s. Since that time, the consoles and components of the ECMO circuit have remained fundamentally unchanged (bladder, rollerpump, silicone membrane oxygenator). Extracorporeal technology, however, has witnessed many significant advancements in components during the past two decades. These new technologies have characteristics that may improve outcomes when applied in the ECMO arena. Understanding how these technologies perform in long-term applications is necessary. Therefore, the purpose of this project is to evaluate the performance of a miniature ECMO circuit consisting of current generation technologies in an animal model. An ECMO circuit (prime volume 145 mL) was designed that included a hollow fiber oxygenator and a remote mounted centrifugal pump. All circuit tubing and components were surface coated. Three sheep (approx 13 kg) were placed on ECMO using standard neck cannulation techniques and maintained according to clinical protocols. Technical implementation, oxygenator function, and hematological parameters were accessed. Duration of ECMO was 20, 48, and 58 hours. There was no evidence of oxygenator failure, as measured by pressure drop and oxygen transfer, in any of the procedures. No plasma leak was observed in any oxygenators. Platelet count trended downward after 24 hours. Visual inspection after ECMO showed very little evidence of gross thrombosis. This ECMO circuit design departs dramatically from the typical North American systems. The use of this console and components facilitated a 70% reduction in priming volume over a traditional ECMO circuit. Further investigations should be conducted to determine if circuit miniaturization can reduce the morbidity associated with blood product consumption and the bloods contact with the artificial surfaces of the ECMO circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号