首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
以桂林市上窑污水处理厂污泥脱水车间剩余污泥、上窑堆肥厂的堆肥堆料和桂林雁山镇森林土壤为菌源进行驯化,分离纯化并筛选得到2株能分别以壬基酚(NP)和双酚A(BPA)为唯一碳源和能源生长的降解菌株N-1和B-1。通过对菌株的16S r DNA序列同源性分析,初步鉴定N-1和B-1菌分别为Cupriavidus(贪铜菌属)、Acinetobacter(不动杆菌属)。通过两菌株分别降解NP和BPA的单因素实验,确定了降解动力学以及时间、温度、p H值对降解过程的影响。研究结果表明,细菌N-1,B-1的最佳初始目标污染物质量浓度为5~10 mg/L,降解40 h,N-1去除率可达49.63%,B-1去除率可达62.34%。细菌N-1对NP的去除半衰期t1/2为41.44~48.02 h;B-1对BPA的去除半衰期t1/2为35.23~37.33 h。细菌N-1,B-1的最佳降解温度均为30℃,最佳p H值均在6.5~7.5之间,即两种细菌在中温、中性条件下对NP和BPA降解效果最佳。  相似文献   

2.
针对天然橡胶加工废水与食用菌菌渣产生环境污染的问题,为寻求一种废弃物治理和资源化利用的有效方法,以高浓度乳清和牛肝菌菌渣为研究对象,将二者混合后添加发酵菌剂(EM)进行好氧堆肥处理,对不同处理堆肥过程中的温度、C/N比、有机质、腐殖酸、pH值及含水率变化趋势进行分析,并用发酵完全后的处理A进行种子发芽指数(GI)试验.结果表明,与未加入乳清的堆肥处理B相比,加入高浓度乳清的处理A可快速提高堆体温度,最高温度达60℃,C/N比可下降至20以下.处理A和B有机质含量较发酵前分别下降16.1%和7.4%,发酵前后处理A腐殖酸含量无明显化,处理A发酵后pH值为5.79,含水率为25.5%.处理A堆体温度变化与微生物数量变化趋势相符.种子发芽指数(GI)结果表明,乳清与菌渣堆肥发酵后均能完全腐熟无毒性.  相似文献   

3.
毒死蜱是生产中广泛使用的一类有机磷类杀虫剂。应用光合细菌红假单胞菌PSB 07-26(Rhodopseudomonas sp.)对大白菜和土壤中毒死蜱残留的生物修复进行了研究。室内模拟试验结果表明,培养28 d,PSB 07-26对土壤中添加5 mg/kg、10 mg/kg、15 mg/kg毒死蜱的降解率分别为25.44%、44.57%和44.08%。田间试验结果表明:随着PSB 07-26含量的增加,其对大白菜和土壤中毒死蜱的降解率升高;施用PSB 07-26菌剂6 750 mL/hm2,3 d后对大白菜中毒死蜱的降解率为20.97%,9 d后对菜田土壤中毒死蜱的降解率为39.14%。  相似文献   

4.
分离出能高效降解机油的真菌并研究其使用方法.从机械润滑油污染的土中分离出2株真菌,GXUA和GXUB.形态鉴定为曲霉属(Aspergillus)菌.rDNA的ITS序列同源性分析表明,GXUA与A.tubingens,GXUB与A.fumigatus菌株SRRC 43完全同源.根据均匀设计的油-矿质液中的摇床发酵结果,混合菌体对机油的降解效率高于单菌株,最佳发酵条件为25 g菌丝体/L矿质液,pH=5.0,26 ℃.在此条件下,于10 g机油/L矿质液中摇床发酵9 d,其降解效率为95.90%.液-质色谱分析表明,混合菌能降解机油中700~900 Dt的大分子.用两菌株的孢子和其他两种生物材料试制了实验室级的颗粒(直径1 cm)生物制剂.在实验室级水平上,按500粒/m2水面和150粒/kg土用量分别处理具有约2 mm厚油膜的水(自来水和海水)和50 g机油/kg土的土壤,处理后的水和土壤中残余油量符合国家有关环境污染控制标准,添加油酸钠和H2O2能够显著提高降解效率.  相似文献   

5.
水体中的微生物对壬基酚聚氧乙烯醚的生物降解   总被引:11,自引:3,他引:11  
为有效控制水体中壬基酚聚氧乙烯醚的污染 ,以芽孢杆菌、假单胞菌、诺卡氏菌和假丝酵母为试验菌株 ,研究了其对壬基酚聚氧乙烯醚的生物降解特性。试验结果表明 ,4菌株在一定的条件下对水体中的壬基酚聚氧乙烯醚均有一定的降解率。若按体积比 1∶ 2∶ 1∶ 1的比例将四菌株组合成复合菌群 ,可大幅度提高处理效率 ,降解率可达 61 %。应用该复合菌对影响壬基酚聚氧乙烯醚降解的各种主要因素进行了研究 ,发现降解菌在θ为 2 5~ 30℃ ,p H值为 5.5~ 8.5及壬基酚聚氧乙烯醚初始质量浓度ρ(NP1 0 EO)为 0~ 1 0 0 mg/ L范围内保持高活性 ;当底物质量浓度大于 1 0 0 mg/ L 时 ,平均降解速率线性下降 ;当接种量标准为 1× 1 0 8CFU/ m L (即菌悬液 /反应液为1 0 % )时壬基酚聚氧乙烯醚的降解是高效与经济的  相似文献   

6.
高铁酸钾氧化降解水中双酚A的研究   总被引:2,自引:0,他引:2  
为了对实际应用提供理论指导,通过烧杯试验研究了高铁酸钾(K2FeO4)对水中内分泌干扰物双酚A(BPA)的氧化降解效能,探讨了水中本底物质对K2FeO4氧化降解BPA的影响.结果表明,水中BPA易被K2FeO4氧化降解,适宜的氧化时间为30 min,适宜的pH值为5.0~6.0;当原水BPA质量浓度为2 mg/L,K2FeO4/BPA物质的量比为3时,BPA基本完全降解;低BPA初始浓度下,K2FeO4降解BPA的效能下降;水中本底物质天然有机物、SiO32-和自由基抑制剂叔丁醇的存在一定程度上抑制K2FeO4对BPA的氧化降解,面HCO3-的存在一定程度上促进K2FeO4对BPA的降解.  相似文献   

7.
多功能混合菌剂处理模拟生活污水研究   总被引:4,自引:0,他引:4  
从菜园土壤及药材土壤土样中分离选育出以丝状菌为主的6株COD高效降解菌,与实验室保藏的2株絮凝剂产生菌构建混合菌剂,使菌剂同时具有降解污染物以及增强活性污泥沉降性和絮凝性的功能.以COD去除率、污泥指数和活性污泥絮凝性为指标,研究了混合菌剂各菌种接种量的配比.结果表明,该菌剂添加于活性污泥系统处理模拟生活污水,可以使COD去除率从86.5%提高到94.5%,污泥指数从124下降到59.0,活性污泥絮凝性从0.358增加到0.530.研究表明,该多功能混合菌剂添加于活性污泥系统可以显著增强对模拟生活污水的处理效果.  相似文献   

8.
土壤和辣椒中吡唑醚菌酯的残留检测与消解动态研究   总被引:1,自引:0,他引:1  
研究了土壤和辣椒中吡唑醚菌酯的高效液相色谱检测方法,并在天津、山东济南和浙江杭州进行土壤和辣椒中吡唑醚菌酯残留状况和消解动态规律研究的田间试验.结果表明,在0.05~1 mg/kg的添加水平下,辣椒中吡唑醚菌酯的平均添加回收率为84.59%~92.08%,变异系数为2.44% ~ 6.81%;在0.03~1 mg/kg的添加水平下,土壤中吡唑醚菌酯的平均添加回收率为82.75% ~89.74%,变异系数为5.03% ~6.25%;辣椒和土壤中吡唑醚菌酯的最小检出量均为1.3×10-10g,其中辣椒中吡唑醚菌酯的最低检出质量比为0.005mg/kg,土壤中为0.003 mg/kg.田间残留试验表明,吡唑醚菌酯在土壤和辣椒中的残留消解动态规律符合一级动力学反应模型,在土壤和辣椒中的残留消解半衰期分别为4.5~5.4 d和2.9 ~ 4.7 d.按推荐剂量和1.5倍推荐剂量在辣椒上各喷施18.7%烯酰吗啉·吡唑醚菌酯水分散粒剂3~4次,2次施药间隔为10 d,距最后1次施药5d时,吡唑醚菌酯在辣椒中的最高残留量为0.28 mg/kg,低于国际食品法典委员会(CAC)规定的辣椒中吡唑醚菌酯的最大残留限量标准(0.5mg/kg).  相似文献   

9.
菌渣、鸡粪联合堆肥工艺研究   总被引:3,自引:0,他引:3  
对以菌渣、鸡粪为主要原料的静态条垛式好氧堆肥工艺进行了研究.结果表明在1次发酵过程中,温度维持在55 ℃以上的时间均超过7 d.堆肥结束时,堆体温度恢复到略高于室温水平,含水率下降15%左右,pH值为7.8左右,总氮含量损失了13.8%~15%,并且主要发生在1次发酵阶段.本文通过对各参数的测定和分析发现,菌渣和鸡粪通过添加酵素菌进行30 d左右好氧发酵,即可获得高质量的堆肥产品,对堆肥工程有指导作用.  相似文献   

10.
将筛选分离出的氯嘧磺隆降解菌2N3在特定的载体上扩大培养,进一步制备氯嘧磺隆降解菌菌剂.通过高效液相色谱法进行定量分析,根据降解率的高低筛选菌剂中载体配比、接种菌液量、加入营养液量、发酵时间、烘干温度等影响因子的单一因素最佳用量.设计5因素4水平正交试验,筛选出制备菌剂的最佳条件为:麦麸、木屑、玉米粉、稳定剂的最佳载体配比80:10:5:5,接菌量15 mL,营养液用量10 mL,发酵时间36 h,烘干温度35℃.上述条件下制备的菌剂对氯嘧磺隆的降解率为85.3%.对该菌剂的稳定性试验测得,在25℃下该菌剂能够稳定保存40 d,并且数天后仍对氯嘧磺隆具有降解作用.  相似文献   

11.
通过富集培养分离出嗪草酮降解菌N1,降解菌在固体平板上培养,菌落大,表面粗糙,扁平,不规则,为质地软、稍有光泽的白色菌落,直径为5~7mm.菌体细胞为杆状,末端方,成短或长链,菌体大小为1.0~ 1.2 μm× 3.0~ 5.0 μm.将N1降解菌制成菌剂,用气楣色谱法进行定量分析,通过单因素试验确定菌剂中载体配比、接种菌液量、加入营养液量、发酵时间、烘干温度等影响因子的优势条件,设计正交试验确定最优菌剂制备条件:m(豆粕):m(麦麸):m(木屑):m(硅藻土)比例为60:20:15:5,接种菌液量为15%,营养液量为10%,发酵时间为48 h,烘干温度为30℃.在上述条件制备的菌剂对嗪草酮的降解率为79%.该菌剂在25℃下保存50d后对嗪草酮仍有较高的降解效果.  相似文献   

12.
建立了番茄果实和土壤中氟吡菌胺残留的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法。用乙腈水溶液提取样品中的氟毗菌胺,以C_(18)柱为分析柱、乙腈-甲酸水溶液为流动相,采用超高效液相色谱-串联质谱多反应监测、电喷雾正离子源、外标法定量。氟吡菌胺在0.05~1.00 mg/L范围内与峰面积呈良好的线性关系,线性方程为y=6964.10x-143.28,决定系数为0.996 8。向对照番茄果实、对照土壤中分别添加氟吡菌胺标样,使其添加量分别为0.10 mg/kg、0.40 mg/kg和2.00 mg/kg,平均回收率分别为92.43%~103.32%和92.75%~104.46%,相对标准偏差分别为3.8%~4.9%和3.4%~4.4%。番茄果实和土壤中氟吡菌胺的定量限分别为1.0μg/kg和1.7μg/kg,检出限分别为0.3μg/kg和0.5μg/kg。  相似文献   

13.
为了探究结构差异较大、应用较为广泛的几类增塑剂雌激素活性的联合效应,选择邻苯二甲酸二丁酯(DBP)、双酚A(BPA)和壬基酚(NP)作为邻苯二甲酸酯、双酚A类和烷基酚类增塑剂的代表物进行试验.用DBP、BPA和NP单独及两两混合处理MCF-7细胞.采用MTT法检测培养24h、48 h、72 h和96h时的细胞增殖情况.采用流式细胞术检测药物培养48h后的细胞生长周期分布,并计算细胞增殖指数(PI).运用效应叠加模型(ES)判定联合效应类型.结果表明,在单独暴露试验中,DBP、BPA和NP组PI均大于1,且均能提高S期(DNA合成期)细胞比例.因此,DBP、BPA和NP均能显著促进MCF-7细胞增殖.混合暴露试验中,1)DBP和BPA在MTT试验中24h、48h、72 h和96h时的效应叠加指数(ESI)分别为1.013 9、1.023 8、0.9999、1.010 8,在流式细胞仪试验中ESI为1.014 1.因此,DBP和BPA的雌激素活性联合效应为加和作用.2)DBP和NP在MTT试验中24 h、48 h、72 h和96 h时的ESI分别为1.004 0、1.008 6、1.011 5、1.010 3,流式细胞仪试验中ESI为0.997 0.因此,DBP和NP的雌激素活性联合效应为加和作用.3)BAP和NP在MTT试验中24h、48 h、72 h和96h时的ESI分别为0.980 6、0.981 8、0.977 7、0.973 3,流式细胞仪试验的ESI为0.912 8.由此可知,BPA和NP的雌激素活性联合效应为拮抗作用.因此,可以采用MCF-7细胞增殖试验研究环境污染物雌激素活性联合效应.  相似文献   

14.
恶臭假单胞菌降解壬基酚的条件优化及产物分析   总被引:5,自引:1,他引:4  
从活性污泥中分离得到菌株X-8,经16S rDNA序列测定和分析比较,鉴定该菌株为恶臭假单胞菌.借助正交试验,对该菌株的生长条件和壬基酚(NP)降解条件进行了优化.在实验室利用X-8降解NP的适宜条件为:温度40 ℃,pH值7.0,降解时间26 h,培养基中NP质量浓度14.723 75 ng/霯.在此条件下,降解率可达75.28%.通过GC-MS检测,对菌株X-8的降解产物进行了分析,推测NP的降解产物为辛基酚和戊基酚.  相似文献   

15.
为评价百菌清在马铃薯上的使用安全性及土壤中的消解动态残留,建立了百菌清在马铃薯及土壤中的残留分析方法,2016—2017年在湖南长沙和河北石家庄两地进行了720 g/L百菌清悬浮剂在马铃薯上的施用,分析了其有效成分百菌清在马铃薯上的消解动态和最终残留。马铃薯、土壤样品用体积比为1∶1的丙酮-乙腈的混合液振荡提取,提取液经盐析、浓缩后用乙腈定容,气相色谱法检测。结果表明,在添加水平为0. 02 mg/kg、0. 20 mg/kg和2. 00 mg/kg时,马铃薯中百菌清残留量检测方法的添加回收率为81. 1%~110. 5%,相对标准偏差(RSD)为4. 4%~11. 9%;土壤中百菌清残留量检测方法的添加回收率为82. 4%~111. 6%,RSD为6. 3%~10. 9%。百菌清在马铃薯上以高剂量(3 240. 0 g/hm~2)、低剂量(2 160. 0 g/hm~2) 2个剂量分别施药3次和4次,最后一次施药后7 d、14 d、21 d的马铃薯的最大残留量均值分别为0. 084 mg/kg、0. 026 mg/kg、0. 020 mg/kg。百菌清在土壤中的残留消解动态规律符合一级动力学反应模型,其消解半衰期为3. 63~8. 35 d,在土壤环境中较易降解。  相似文献   

16.
从长期使用拟除虫菊酯类农药的土壤中筛选分离到1株甲氰菊酯降解菌CZ-1,对其降解特性和生物学特件进行了研究.经生理生化试验和16 S rDNA序列同源性分析,初步将菌株CZ-1鉴定为红假单胞菌属(Rhodopseudomonas sp.).GC对菌株CZ-1降解特性的研究表明,菌株CZ-1以共代谢方式降解甲氰菊酯.最佳降解条件为:pH=7.5,35℃.菌株CZ-1在最佳降解条件下,7 d对200 mg/L的甲氰菊酯降解率达75.36%.荫株CZ-1对植物促生的相关特性表明,培养24h,菌株CZ-1能够产生吲哚乙酸(IAA)(1.86±0.12)mg/L,ACC脱氨酶活性为(0.39±0.01)U/mg,能显著增加玉米的根长.  相似文献   

17.
BDE209好氧降解菌的筛选及降解特性研究   总被引:3,自引:0,他引:3  
为了有效修复广东省贵屿镇环境中十溴联苯醚(Pentabromophenyl ether,BDE209)的污染,从该地区的环境样品中筛选出1株在好氧条件下以BDE209为唯一碳源和能源生长的降解菌J-1,根据菌株的形态特征、生理生化特征以及16S rDNA序列分析,鉴定为苏云金芽孢杆菌( Bacillus thuringiensis ).通过考察不同的环境因素对菌株生长及其降解能力的影响,确定该菌适宜的生长条件为:pH=6.0~9.0,温度30 ℃,溶氧量4.55~7.50 mg/L.降解BDE209的最佳条件为:pH=8.0,温度30 ℃,溶氧量5.94 mg/L.投菌量的增加能较大幅度地提高该菌对BDE209的降解效果.不同的共代谢底物对菌株降解BDE209有不同的影响,乳糖和蔗糖能促进其对BDE209的降解.当体系中存在低质量浓度的Cd2+时(≤5 mg/L),该菌对BDE209的降解效果得到提高.  相似文献   

18.
为研究生物表面活性剂对石油降解菌的作用效果,采用酸沉法从芽孢杆菌(Bacillus sp.)ZG0427培养液中提取了生物表面活性剂,用薄层层析方法对其类型进行鉴定,并测定了带电性质及乳化性能。分别将芽孢杆菌ZG0427菌体和表面活性提取物加入石油降解假单胞菌(Pseudomonas sp.)YM15及红平红球菌(Rhodococcus erythropolis)KB1培养物中,研究其对石油降解菌生长及石油降解效果的影响。结果表明,芽孢杆菌ZG0427所产表面活性剂为脂肽类阴离子表面活性剂。当表面活性剂水溶液质量浓度为100 mg/L时,其乳化指数可达到58.0%。当ZG0427与YM15混合培养时石油降解率从32.70%提高到39.33%;与KB1混合培养时,石油的降解率从19.98%提高到34.33%。当在石油降解菌中添加不同质量浓度表面活性剂提取物后,不仅促进了假单胞菌YM15的生长,还能明显增加其石油降解效率(p0.05),在培养基中添加20 mg/L表面活性剂提取物,培养第5 d时,YM15菌落数达到2.5×1012CFU/m L,对石油的降解率为40.07%。生物表面活性剂产生菌ZG0427与石油降解菌KB1及YM15构成的复合菌剂对石油有良好的降解效果,但高剂量表面活性剂对KB1生长产生了不同程度的抑制作用,导致石油降解率降低。  相似文献   

19.
从污水处理厂活性污泥中筛选得到一株多溴联苯醚好氧降解菌,命名为GH10.根据菌株形态特征、生理生化特性、16S rDNA基因序列及系统发育树分析,鉴定为长野雷夫松氏菌(Leifsonia shinshuensis).该菌能够利用十溴联苯醚作为唯一碳源生长,它对十溴联苯醚的降解率用HPLC法测定.十溴联苯醚质量浓度为10~50 mg/L时,降解效果较好,在十溴联苯醚初始质量浓度为50 mg/L、温度为30℃、摇床转速为150 r/min的条件下避光培养5d,菌株GH10对十溴联苯醚的降解率可达到59.24%.降解十溴联苯醚的最适条件为温度30℃,pH值7.0,接种量10%,相同条件下添加外加碳源葡萄糖可提高其降解率到90.08%.通过对十溴联苯醚降解动力学的模拟发现,添加外加碳源葡萄糖可以将十溴联苯醚的半衰期从3.91 d缩短至1.45 d.  相似文献   

20.
通过液体富集培养,平板培养分离法从焦化废水的污泥中分离出1株可耐受2 000 mg/L苯酚的菌株,经16S rDNA序列分析,鉴定为施氏假单胞菌(Pseudomonas stutzeri).该菌能以苯酚为唯一碳源和能源生长.通过摇瓶试验和高效液相色谱( HPLC)分析法可知,在pH=7.5,温度为30℃的条件下,苯酚质量浓度在50~400 mg/L时,该菌细胞生长和对苯酚的降解转换快速同步进行.当苯酚质量浓度在800~900 mg/L,菌细胞依次出现快速生长、延缓生长、次快速生长3个生长时期,在前两时期内苯酚降解率低于5%,在次快速生长期内苯酚降解率从低于5%快速增加到100%.气相色谱-质谱联用仪(Gc-MS)测定结果表明,该菌可将苯酚转化成4-羟基-2-氧代戊酸、邻苯二酚、对苯二酚、3,4-二羟基苯甲酸和对羟基苯甲酸等中间产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号