首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
30%SiCp/2024Al复合材料动态再结晶临界条件   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机对30%SiCp/Al复合材料进行热模拟试验,其变形温度为623~773K、应变速率为0.01~10s-1。采用加工硬化率法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-(lnθ)/ε)-ε)曲线最小值的判据,研究了该复合材料动态再结晶临界条件。结果表明,30%SiCp/2024Al复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σp)随变形温度降低或应变速率升高而增加;该材料的lnθ-ε曲线出现拐点,(-(lnθ)/ε)-ε)曲线出现最小值;临界应变(εc)随变形温度升高与应变速率降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即εc=0.563εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为εc=7.96×10-3Z0.038。  相似文献   

2.
通过等温热压缩试验获得Inconel625合金在变形温度为1000~1200℃,应变速率为1~80S^-1条件下的真应力-应变曲线,利用加工硬化率,结合lnθ-ε曲线上的拐点判据及-δ(1nθ)/δε-ε曲线上的最小值,来研究Inconel625合金动态再结晶的临界条件。结果表明,在该实验条件下,Inconel625合金的lnθε曲线均出现拐点特征,对应的-δ(lnθ)/δε-ε曲线出现最小值,该最小值处对应的应变即为临界应变;临界应变随应变速率的增大和变形温度的降低而增加,并且临界应变和峰值应变之间有一定的关系,即εc=0.69εp;动态再结晶时临界应变的预测模型可以表示为εc=4.41×10^-4Z^0.14261。  相似文献   

3.
利用Gleeble-1500热力模拟试验机,获得了20 vol%TiC-弥散铜复合材料在温度450~850℃、应变速率0.001~1 s-1的真应力-应变数据。采用非线性拟合法建立了真应力-应变曲线的非线性方程,求得加工硬化率;研究了该材料的动态再结晶,并采用Zener-Homon参数建立了临界应变模型。结果表明,非线性方程能精确表征真应力-应变曲线,该材料的真应力-应变曲线主要以动态再结晶软化机制为特征;该材料的lnθ-ε曲线出现拐点,-(lnθ)/ε-ε曲线出现极小值说明材料发生了动态再结晶;临界应变均随应变速率的增加及变形温度的降低而增大,且临界应变与峰值应变之间具有相关性,即εc=0.5276εp;临界应变与Z参数之间的函数关系为εc=7.91×10-3Z0.0736。  相似文献   

4.
对节镍型高氮奥氏体不锈钢在不同应变速率、不同变形温度下进行热变形模拟试验,并根据试验数据绘制应力-应变曲线。利用加工硬化率θ与应力-应变σ的曲线拐点和-dθ/dσ-σ曲线最小值点判定动态再结晶开始状态。确定动态再结晶临界应力σ_c和临界应变ε_c。同时计算出临界应变ε_c与峰值ε_p间的关系:ε_c≈0.378ε_p。构建出节镍型奥氏体不锈钢动态再结晶临界应变预测模型:lnε_c=0.026 85lnZ-4.7358。  相似文献   

5.
TA15钛合金β区变形动态再结晶的临界条件   总被引:3,自引:0,他引:3  
采用Thermecmaster-Z热模拟试验机在变形温度1050~1100℃,应变速率10-3~1s-1的条件下进行热模拟压缩试验。采用加工硬化率处理方法对应力-应变数据进行处理,结合lnθ—ε曲线的拐点及-(lnθ)/ε—ε曲线最小值的判据,研究TA15钛合金β区变形时的动态再结晶临界条件。结果表明:在本实验条件下,TA15钛合金的lnθ—ε曲线均出现拐点及-(lnθ)/ε—ε曲线均出现最小值;临界应变随应变速率的增大及变形温度的降低而增加,且临界应变与峰值应变之间基本保持恒定值εc/εp=0.62;临界应变预测模型函数关系可以表示为εc=0.92×10-2Z0.0843。  相似文献   

6.
45Cr4NiMoV合金动态再结晶临界应变   总被引:2,自引:0,他引:2  
采用Gleeble热模拟试验机对45Cr4Ni Mo V合金在变形温度为1000~1150℃,应变速率为0.002~5 s-1,最大变形量为55%的条件下进行热模拟压缩试验。通过对采集到的数据进行处理,结合lnθ-ε曲线的拐点及-(lnθ)/ε-ε曲线的极小值判据,建立了45Cr4Ni Mo V动态再结晶临界应变模型。结果表明,45Cr4Ni Mo V合金动态再结晶临界应变随变形温度递增以及应变速率递减而增加,临界应变εc与峰值应变εp之间满足:εc=0.42761εp,动态再结晶临界应变模型为:εc=0.000522Z0.15142。  相似文献   

7.
采用Gleeble-1500D型热/力模拟试验机在变形温度300~450℃、应变速率0.005~1 s-1条件下对AZ41M镁合金进行热模拟压缩试验。用计算加工硬化率的方法处理试验数据,再结合lnθ-ε曲线的拐点及–?(lnθ)/?ε-ε曲线最小值判据,建立合金热变形过程中的动态再结晶临界应变模型。根据热压缩实验数据,分析温度和应变速率等工艺参数对合金动态再结晶的影响。结果表明:在该实验条件下,AZ41M镁合金的lnθ-ε曲线均具有拐点特征,对应的-?(lnθ)/?ε-ε曲线均出现最小值,该最小值所对应的应变即为临界应变εc,得到合金临界应变预测模型;临界应变随变形温度的降低和应变速率的增加而增大,且峰值应变εp和临界应变εc的比值满足εp/εc=1.97。  相似文献   

8.
利用Gleeble-1500D型热模拟试验机对Cu-0.4Zr-0.15Y合金进行高温单次轴向热压缩试验,研究该合金在应变速率范围为0.001~10 s~(-1),热变形温度为550~900℃条件下的热变形行为。通过真应力-真应变数据得出材料的加工硬化率θ,结合lnθ-ε曲线和-(lnθ)/ε-ε曲线特征,研究Cu-0.4Zr-0.15Y合金热变形过程的再结晶临界条件。结果表明:Cu-0.4Zr-0.15Y合金应力-应变具有动态再结晶特征;该合金的lnθ-ε曲线拐点处对应于-(lnθ)/ε-ε曲线的最小值,最小值所对应的应变是临界应变ε_c;临界应变ε_c的变化与应变速率和变形温度有关,临界应变ε_c与Zener-Hollomon参数Z之间的函数关系为ε_c=6.4×10~(-3)Z~(0.07768),且临界应变ε_c与峰值应变ε_p之间满足ε_c/ε_p=0.448。同时,Cu-0.4Zr-0.15Y合金发生动态再结晶组织演变与变形温度和应变速率有关。  相似文献   

9.
采用Gleeble-1500热压缩模拟试验机对Mg-6Zn-1Mn合金进行压缩实验,研究了该合金其在变形温度250 ~400℃、应变速率0.01 ~10 s-1范围内的流变应力及动态再结晶行为.通过计算加工硬化速率θ得到合金发生动态再结晶的临界应力σc和临界应变εc,并且建立临界值与峰值应力σp、峰值应变εp之间的定量关系,用截线法测量合金压缩后的平均晶粒尺寸.结果表明:Mg-6Zn-1Mn镁合金在高温下塑性变形的热本构方程为:ε·exp(22919/T) =2.77·σ8.19;合金发生动态再结晶的临界应变随着应变速率的增加而升高,随变形温度的增加而降低,发生动态再结晶的临界条件为:ε>εc=6.648×10-3Z0.06149;各特征变量之间存在如下关系:σc=0.7295σp、εc=0.2639εp;动态再结晶的平均晶粒尺寸dave随温度的升高、应变速率的减小而增大,与Zener-Hollomon参数之间的关系为:dave=2.11×103·Z-0.1378.  相似文献   

10.
采用热物理模拟压缩实验获得退火态20MnNiMo钢在不同温度和应变速率下的真应力-应变曲线,作为计算动态再结晶模型的底层数据.基于d σ/dε-σ曲线,识别了真应力-应变曲线上能表征动态再结晶演变过程的特征点:临界应变εc,峰值应变εp及最大软化速率应变ε*.引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程.设计无量纲参数Z/A,对已修正的Avrami方程作线性回归分析,表征了不同变形条件对退火态20MnNiMo钢动态再结晶体积分数演变的影响,并详细描述了动态结晶对应力软化的影响.结果表明:在高应变速率下,在应变后期发生剧烈软化;在中等应变速率下,发生剧烈的软化后趋于稳定;在低应变速率条件下,出现硬化和软化的周期性循环.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号