首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超声波-微波辅助酶解制备小麦抗性淀粉,以抗性淀粉收率为指标,在单因素试验基础上,进行Box-Behnken试验设计,对超声时间、微波时间、普鲁兰酶添加量和酶解时间4个因素进行响应面优化试验分析.结果表明:4个因素的影响主次关系为普鲁兰酶酶解时间>超声时间>普鲁兰酶添加量>微波时间.响应面优化试验确定超声波-微波辅助...  相似文献   

2.
以桑椹酒糟为原料,乙醇溶液为提取剂,在超声波辅助条件下提取花青素.以花青素提取量为评价指标,探讨了超声时间、超声温度、超声功率、固液比和提取剂中乙醇浓度五个因素对花青素提取量的影响.在单因素试验基础上,采用Plackett-Burman (PB)和Box-Benhnken Design (BBD)设计法,对影响色素提取量的5个因素进行了分析和研究.结果表明:影响色素提取量的关键因素为固液比、提取剂中乙醇浓度、超声时间;较优提取工艺条件为0.1% HCl-77%乙醇溶液、超声时间120(min),固液比1∶24 (g/mL),超声温度50℃,超声波功率400W,在此条件下色素提取量的预测值为2.51805mg/g,实测值为2.392mg/g.  相似文献   

3.
以大豆分离蛋白为原料,采用超声辅助复合酶酶解制备大豆多肽,以单因素实验为基础,选择复合酶添加量、酶解时间、酶解温度以及酶解p H为自变量,大豆多肽得率为响应值,采用响应面分析法研究各自变量及其交互作用对大豆多肽得率的影响,并对大豆多肽的相对分子质量分布进行测定。结果表明,影响大豆多肽得率的各因素强弱顺序为:酶解温度复合酶添加量酶解时间酶解p H;超声辅助复合酶酶解制备大豆多肽的最佳工艺条件为超声功率180 W、超声时间10 min、超声温度35℃、碱性蛋白酶与中性蛋白酶质量比3∶1、复合酶添加量2.04%、酶解时间4.0 h、酶解温度59℃、酶解p H 8.0,在此条件下大豆多肽得率为63.27%,相对分子质量大部分集中在1 000以下。  相似文献   

4.
酒糟纤维素提取工艺研究   总被引:1,自引:0,他引:1  
研究碱浓度、水解温度和料液比等因素对纤维素提取效果的影响,优化酒糟纤维素提取工艺条件.结果表明,纤维素的提取率及纯化程度主要受碱浓度的影响,在氢氧化钠浓度为0.5 mol/L、料液比1∶10、碱水解温度为60℃时,纤维素提取效果最好.  相似文献   

5.
以五味子干果为原料,采用酶解法辅助超声波技术提取其中的五味子乙素。单因素试验结果表明,酶解温度、酶解时间以及酶用量对乙素得率的影响较大。通过响应面回归分析,得到酶解辅助超声波提取乙素的优化工艺条件为酶解温度52.89℃、提取时间4.04h、酶用量0.96%。在此最优条件下,五味子乙素的得率为0.262%。  相似文献   

6.
将酒糟酶解液添加到HS培养基中,探究其不同添加量及玉米浆、黄水、MgSO4、乙醇、柠檬酸和Na2HPO4 6种效应因子对木葡糖醋杆菌(Gluconacetobacter xylinus)发酵产细菌纤维素(BC)的影响。结果表明,酒糟酶解液可显著提高BC产量和还原糖的转化率(P<0.05),且当其完全替代HS培养基时,BC产量和还原糖转化率均达到最大,分别为4.84 g/L和31.54%,与HS培养基的细菌纤维素产量和糖转化率相比,分别提高了135.3%和134.0%。玉米浆、黄水、MgSO4、柠檬酸、乙醇和Na2HPO4·12H2O在酶解液中的最适添加量分别为4%、10%、0.6 g/L、1.5 g/L、0.8%和2 g/L,BC最大产量分别为5.91 g/L、7.05 g/L、5.51 g/L、6.08 g/L、5.83 g/L和6.56 g/L,与对照组酶解液的BC产量相比均有显著性提高(P<0.05),其中黄水的增效作用最为显著(P<0.05),BC产量是HS培养基的3.4倍。  相似文献   

7.
采用响应面法优化超声波提取酒糟中玉米黄色素的提取条件并对超声提取玉米黄色素进行抗肿瘤活性研究。在单因素试验的基础上,选取超声时间、固液比和超声波功率为关键因子,应用Box-Behnken中心组合进行3因素3水平的实验设计,以色素收率作为响应值,进行响应面分析(RSA)。结果表明,超声波法提取酒糟中玉米黄色素的最佳提取条件为:提取时间69.85min,超声功率744W,固液比1∶4.5(g:mL),提取率预测值137μg/g,验证值为132μg/g,与预测值的相对误差为3.8%;超声提取的酒糟玉米黄色素对Hela细胞、乳腺癌细胞具有较好的抑制作用。  相似文献   

8.
研究预处理条件对酒糟酶解效果的影响,采用不同的酶组合方式对酒糟进行酶解糖化,探索还原糖含量的变化规律。结果表明,蒸汽加热处理(121℃,15min)后酒糟的酶解效果优于超声波(400W,15min),酒糟酶解糖化的酶添加顺序为先加纤维素酶后加糖化酶,酶添加量分别为纤维素酶(2000U/g纤维素)和糖化酶(1000U/g淀粉),该条件下还原糖含量达到49.75mg/mL。   相似文献   

9.
采用超声波辅助风味蛋白酶酶解制备猪肩胛骨降血压肽并与常规酶解(未经超声处理的酶解)所得酶解液做比较。以酶解液的血管紧张素转化酶(ACE)抑制率为主要指标,考察超声功率、超声时间、超声温度、超声工作间隙、超声后酶解时间对酶解液ACE抑制率的影响,并在此基础上进行响应面优化实验。通过实验,获得的最佳超声条件为:超声时间25min,超声功率717W,超声温度40℃,超声工作间隙比1∶1.5(s/s),酶解时间3h,在该条件下,得到的酶解液ACE抑制率理论值为75.29%。此条件下制备出ACE抑制率为75.58%的猪肩胛骨降血压肽,比常规酶解提高了10.27%。半数抑制浓度(IC50)值下降32.8%,酶解时间缩短1.5h。  相似文献   

10.
采用超声波辅助风味蛋白酶酶解制备猪肩胛骨降血压肽并与常规酶解(未经超声处理的酶解)所得酶解液做比较。以酶解液的血管紧张素转化酶(ACE)抑制率为主要指标,考察超声功率、超声时间、超声温度、超声工作间隙、超声后酶解时间对酶解液ACE抑制率的影响,并在此基础上进行响应面优化实验。通过实验,获得的最佳超声条件为:超声时间25min,超声功率717W,超声温度40℃,超声工作间隙比1∶1.5(s/s),酶解时间3h,在该条件下,得到的酶解液ACE抑制率理论值为75.29%。此条件下制备出ACE抑制率为75.58%的猪肩胛骨降血压肽,比常规酶解提高了10.27%。半数抑制浓度(IC50)值下降32.8%,酶解时间缩短1.5h。   相似文献   

11.
对茶叶籽油的超声波辅助LVK脂肪酶酶解工艺进行优化。在单因素实验基础上,选取LVK脂肪酶浓度、初始p H、酶解温度和时间为考察因子,茶叶籽油水解率为响应值,运用中心组合实验设计对其酶解工艺进行优化,并建立数学回归模型。结果表明,优化工艺条件为:超声功率220 W,搅拌转速800 r/min,油水比1∶1.75(w/v),氯化钙浓度0.25%,LVK脂肪酶浓度5.5%,酶解温度49.5℃,初始p H9.4,酶解时间4 h。在此条件下,水解率实测值为83.15%,模型预测值为82.06%,水解效率高。   相似文献   

12.
利用不同蛋白酶酶解黑豆蛋白,根据水解度选择最佳用酶为碱性蛋白酶,采用超声波辅助酶法提取黑豆肽;分析超声波处理时间、功率、加酶量、pH、酶解时间及底物浓度对水解度及二苯代苦味酰基自由基( DPPH·)清除能力影响.在单因素实验基础上,依据响应面分析确定最优提取工艺条件为:超声功率1029.27 W、酶解pH 8.64、底...  相似文献   

13.
为获得溶解性和冲调性较好的米糠粉,以全脂米糠为原料,采用酶解结合喷雾干燥的方法制备速溶米糠粉,利用响应面法优化酶解液喷雾干燥的条件,并对米糠粉的速溶性指标进行测定。结果显示:在α-淀粉酶添加量4 000 U/g、温度60℃、pH 6.5、酶解时间90 min的条件下,米糠液中可溶性碳水化合物达25.13%;米糠酶解液喷雾干燥的条件为:进风温度160℃、热风流量31.40 m~3/h、进料流量360 mL/h,此条件下,米糠出粉率最高,达到43.69%。所制备的米糠粉冲调性较好,色泽风味具佳。  相似文献   

14.
本研究以微晶纤维素为原料,经过超微粉碎预处理后,通过酶解辅助高压均质的方法制备纳米纤维素,研究纳米纤维素的结构和理化性质,并通过扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对纳米纤维素进行表征。结果表明,超微粉碎前处理能使微晶纤维素颗粒大小形状趋于均一化;所制备的纳米纤维素呈束状结构,颗粒直径为1540 nm;纳米纤维素在制备过程中纤维素结构未遭到破坏;纳米纤维素的结晶度为58.1%,仍属于纤维素Ⅰ型;纳米纤维素的起始热分解温度比微晶纤维素的分解温度低,当温度达到500℃时,纳米纤维素的热失重率为82.9%。因此通过酶解辅助高压均质制备的纳米纤维素有望在可降解复合材料中得到应用。   相似文献   

15.
以花生蛋白为原料,Alcalase碱性蛋白酶为水解酶,研究了利用酶膜反应器连续酶解花生蛋白的最佳工艺条件。通过单因素实验选取实验因素与水平,并确定了操作压力为0.02MPa。再选取水解度(DH)为响应值,设计了四因素(pH、温度、底物浓度和加酶量)三水平的中心组合响应面实验。得出最佳工艺条件为:pH9.6,温度54℃,底物浓度2%,加酶量7440u/g。通过在最佳水解条件下进行水解,实际得到DH为26.13%。   相似文献   

16.
以花生蛋白为原料,Alcalase碱性蛋白酶为水解酶,研究了利用酶膜反应器连续酶解花生蛋白的最佳工艺条件.通过单因素实验选取实验因素与水平,并确定了操作压力为0.02MPa.再选取水解度(DH)为响应值,设计了四因素(pH、温度、底物浓度和加酶量)三水平的中心组合响应面实验.得出最佳工艺条件为:pH9.6,温度54℃,底物浓度2%,加酶量7440u/g.通过在最佳水解条件下进行水解,实际得到DH为26.13%.  相似文献   

17.
为优化玉米酶解的工艺,在单因素试验基础上,采用响应面法建立了玉米酶解方法的二次多项数学模型,并验证了该模型的有效性;探讨了酶解温度、酶解时间、酶添加量3个因子的交互作用及其最佳水平。研究结果表明:酶解时间显著影响玉米酶解程度,优化的条件为:酶解温度为60.5℃,酶解时间53min,酶添加量0.29%。  相似文献   

18.
响应面法优化超声波-微波协同酶解制备鲑鱼抗氧化肽   总被引:1,自引:0,他引:1  
利用超声波-微波协同酶解鲑鱼胶原蛋白制备鲑鱼抗氧化肽,在单因素实验的基础上,通过响应面法考察了超声功率、超声波-微波处理时间和超声波-微波处理温度对于抗氧化钛超氧阴离子自由基清除率的影响.结果表明,超声波-微波协同制备鲑鱼抗氧化肽的最佳条件为微波功率500 W、超声功率100W、超声波-微波处理时间9.7 min、超声波-微波处理温度41℃.在此条件下,超氧阴离子自由基清除率理论值为68.4%,实际清除率可达到67.2%.  相似文献   

19.
本文研究了香椿老叶中总黄酮的提取工艺,提取液中总黄酮的得率以芦丁为对照品进行校正。先利用复合酶水解香椿老叶中的纤维素和果胶,探究出最佳酶解条件为复合酶2(果胶酶:纤维素酶=2:1),酶用量为2.00%(W/V),酶解时间40 min,酶解温度45℃,上清液中总黄酮得率为2.49%。再进行超声辅助提取,采用通过单因素实验和Box-Behnken实验对乙醇体积比、超声功率、超声时间、超声温度4个条件进行优化,各项方差分析表明影响香椿老叶中总黄酮得率的顺序依次为:超声功率乙醇体积分数提取温度提取时间,再根据回归方程预测最佳提取条件。在采用乙醇体积分数60%、超声功率227 W、提取温度53.00℃、提取时间51 min条件下,香椿老叶总黄酮得率为3.85%,与预测值仅相差0.03%,表明工艺参数准确可靠。  相似文献   

20.
以超声为辅助手段,利用中温α-淀粉酶对葛根粉进行酶解,在单因素实验的基础上,根据Box-Benhnken中心组合实验设计原理采用三因素三水平的响应面实验,以葡萄糖当量(DE值)为考察指标,确定最优酶解工艺参数.确定了辅助超声条件为:超声功率90W、超声时间10min.在该条件下,优化出的最佳酶解工艺为:固形物浓度29.6%,酶解时间32min,酶添加量1.19%.扫描电镜观察结果显示,酶解后的葛根粉颗粒呈不规则片状,变得疏松、易于溶解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号