首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
半世纪以来,物种概念的定义备受关注,不同研究方向的生物学家提出24种不同或至少有分歧的物种概念,根据其不同的物种概念,物种的界定和物种的数量会出现很大的差异。人们普遍认同:物种是进化分离的微居群谱系,但把谱系分离过程中获得的特征如生殖隔离、可鉴定性、单系统发生等视为鉴定物种次级特征却有不同的声音。该文提出统一的物种概念,把谱系进化分离作为物种界定的唯一而又必要的特征,把谱系分离过程中获得的次级特征作为界定谱系分离的证据。鉴于此,物种概念间的分歧就会化解。其一,物种概念化与物种界定明显分开,不再混淆;其二,谱系的次级特征只与物种界定有关,在某种程度上为谱系分离提供证据;第三,若能把合理解释的任何一个特征作为某物种客观存在的证据,这样更多的特征更能确定谱系分离;最后最重要的是,统一物种概念使我们解放思想,扬弃传统的物种界定标准,探求物种界定的新思路。  相似文献   

2.
Species concepts and species delimitation   总被引:7,自引:0,他引:7  
The issue of species delimitation has long been confused with that of species conceptualization, leading to a half century of controversy concerning both the definition of the species category and methods for inferring the boundaries and numbers of species. Alternative species concepts agree in treating existence as a separately evolving metapopulation lineage as the primary defining property of the species category, but they disagree in adopting different properties acquired by lineages during the course of divergence (e.g., intrinsic reproductive isolation, diagnosability, monophyly) as secondary defining properties (secondary species criteria). A unified species concept can be achieved by treating existence as a separately evolving metapopulation lineage as the only necessary property of species and the former secondary species criteria as different lines of evidence (operational criteria) relevant to assessing lineage separation. This unified concept of species has several consequences for species delimitation, including the following: First, the issues of species conceptualization and species delimitation are clearly separated; the former secondary species criteria are no longer considered relevant to species conceptualization but only to species delimitation. Second, all of the properties formerly treated as secondary species criteria are relevant to species delimitation to the extent that they provide evidence of lineage separation. Third, the presence of any one of the properties (if appropriately interpreted) is evidence for the existence of a species, though more properties and thus more lines of evidence are associated with a higher degree of corroboration. Fourth, and perhaps most significantly, a unified species concept shifts emphasis away from the traditional species criteria, encouraging biologists to develop new methods of species delimitation that are not tied to those properties.  相似文献   

3.
Given the problems of species delimitation in algae using morphology or sexual compatibility, molecular data are becoming the standard for delimiting species and testing their traditional boundaries. The idea that species are separately evolving metapopulation lineages, along with theoretical progress in phylogenetic and population genetic analyses, has led to the development of new methods of species delimitation. We review these recent developments in DNA-based species delimitation methods, and discuss how they have changed and continue to change our understanding of algal species boundaries. Although single-locus approaches have proven effective for a first rapid and large-scale assessment of species diversity, species delimitation based on single gene trees falls short due to gene tree–species tree incongruence, caused by confounding processes like incomplete lineage sorting, trans-species polymorphism, hybridization and introgression. Data from unlinked loci and multi-species coalescent methods, which combine principles from phylogenetics and population genetics, may now be able to account for these complicating factors. Several of these methods also provide statistical support regarding species boundaries, which is important because speciation is a process and therefore uncertainty about precise species boundaries is inevitable in recently diverged lineages.  相似文献   

4.
There is an emerging consensus that the intent of most species concepts is to identify evolutionarily distinct lineages. However, the criteria used to identify lineages differ among concepts depending on the perceived importance of various attributes of evolving populations. We have examined five different species criteria to ask whether the three taxonomic varieties of Humulus lupulus (hops) native to North America are distinct lineages. Three criteria (monophyly, absence of genetic intermediates, and diagnosability) focus on evolutionary patterns and two (intrinsic reproductive isolation and niche specialization) consider evolutionary processes. Phylogenetic analysis of amplified fragment length polymorphism (AFLP) data under a relaxed molecular clock, a stochastic Dollo substitution model, and parsimony identified all varieties as monophyletic, thus they satisfy the monophyly criterion for species delimitation. Principal coordinate analysis and a Bayesian assignment procedure revealed deep genetic subdivisions and little admixture between varieties, indicating an absence of genetic intermediates and compliance with the genotypic cluster species criterion. Diagnostic morphological and AFLP characters were found for all varieties, thus they meet the diagnosability criterion. Natural history information suggests that reproductive isolating barriers may have evolved in var. pubescens, potentially qualifying it as a species under a criterion of intrinsic reproductive isolation. Environmental niche modeling showed that the preferred habitat of var. neomexicanus is climatically unique, suggesting niche specialization and thus compliance with an ecological species criterion. Isolation by distance coupled with imperfect sampling can lead to erroneous lineage identification using some species criteria. Compliance with complementary pattern- and process-oriented criteria provides powerful corroboration for a species hypothesis and mitigates the necessity for comprehensive sampling of the entire species range, a practical impossibility in many systems. We hypothesize that var. pubescens maintains its genetic identity, despite substantial niche overlap with var. lupuloides, via the evolution of partial reproductive isolating mechanisms. Variety neomexicanus, conversely, will likely persist as a distinct lineage, regardless of limited gene flow with vars. lupuloides and pubescens because of ecological isolation--adaptation to the unique conditions of the Rocky Mountain cordillera. Thus, we support recognition of vars. neomexicanus and pubescens as species, but delay making a recommendation for var. lupuloides until sampling of genetic variation is complete or a stable biological process can be identified to explain its observed genetic divergence.  相似文献   

5.
Resurgent interest in the genetics of population divergence and speciation coincides with recent critical evaluation of species concepts and proposals for species delimitation. An important result of these parallel trends is a slight but important conceptual shift in focus away from species diagnoses based on prior species concepts or definitions, and toward analyses of the processes acting on lineages of metapopulations that eventually lead to differences recognizable as species taxa. An advantage of this approach is that it identifies quantitative metapopulation differences in continuous variables, rather than discrete entities that do or do not conform to a prior species concept, and species taxa are recognized as an emergent property of population-level processes. The tension between species concepts and diagnosis versus emergent recognition of species taxa is at least as old as Darwin, and is unlikely to be resolved soon in favor of either view, because the products of both approaches (discrete utilitarian taxon names for species, process-based understanding of the origins of differentiated metapopulations) continue to have important applications.  相似文献   

6.
An accurate understanding of species diversity is essential to studies across a wide range of biological subdisciplines. However, species delimitation remains challenging in evolutionary radiations, particularly in those herbaceous plants associated with microendemic, naturally fragmented distribution systems, where genotypic and phenotypic traits likely evolved discordantly. The Primula merrilliana complex, which is endemic to eastern China and has high horticultural value, used to be treated as one species but several clues suggested it might be composed of multiple species. Here we used multiple lines of evidence, including molecular, morphological, reproductive isolation, and geographic data, to assess independently evolving lineages within this complex. Our results indicated that the species diversity in the complex was underestimated previously, and four species (independently evolving lineages) can be recognized, including two new species described here. The extensive variation of the breeding system, especially the floral morph transition from distyled (outcrossing) to homostyled (selfing) multiple times, possibly promoted the rapid speciation within such a small geographic scale. This study case indicated that the phenomenon of genetically highly divergent but morphologically indistinguishable is perhaps shown in herbs with fragmented distributions; the alternative extreme evolutionary phenomenon, in which complete reproductive barriers have been accumulated but with little genetic differentiation, also exists. Thus we highlight the importance of incorporating other characters, such as postzygotic reproductive isolation and geographic data, with commonly used molecular and morphological traits to infer species boundaries through an integrative taxonomic approach in such systems.  相似文献   

7.
The history of ecology and evolutionary biology is rife with attempts to define and delimit species. However, there has been confusion between concepts and criteria, which has led to discussion, debate, and conflict, eventually leading to lack of consistency in delimitation. Here, we provide a broad review of species concepts, a clarification of category versus concept, an account of the general lineage concept (GLC), and finally a way forward for species discovery and delimitation. Historically, species were considered as varieties bound together by reproduction. After over 200 years of uncertainty, Mayr attempted to bring coherence to the definition of species through the biological species concept (BSC). This has, however, received much criticism, and the last half century has spawned at least 20 other concepts. A central philosophical problem is that concepts treat species as ‘individuals’ while the criteria for categorization treats them as ‘classes’. While not getting away from this problem entirely, the GLC attempts to provide a framework where lineage divergence is influenced by a number of different factors (and correlated to different traits) which relate to the different species concepts. We also introduce an ‘inclusive’ probabilistic approach for understanding and delimiting species. Finally, we provide a Wallacean (geography related) approach to the Linnaean problem of identifying and delimiting species, particularly for cases of allopatric divergence, and map this to the GLC. Going one step further, we take a morphometric terrain approach to visualizing and understanding differences between lineages. In summary, we argue that while generalized frameworks may work well for concepts of what species are, plurality and ‘inclusive’ probabilistic approaches may work best for delimitation.  相似文献   

8.
While reinforcement may play a role in all major modes of speciation, relatively little is known about the timescale over which species hybridize without evolving complete reproductive isolation. Birds have high potential for hybridization, and islands provide simple settings for uncovering speciation and hybridization patterns. Here we develop a phylogenetic hypothesis for a phenotypically diverse radiation of finch-like weaver-birds (Foudia) endemic to the western Indian Ocean islands. We find that unlike Darwin's finches, each island-endemic Foudia population is a monophyletic entity for which speciation can be considered complete. In explaining the only exceptions-mismatches between taxonomy, mitochondrial, and nuclear data-phylogenetic and coalescent methods support introgressive hybridization rather than incomplete lineage sorting. Human introductions of known timing of one island-endemic species, to all surrounding archipelagos provide two fortuitous experiments; (1) population sampling at known times in recent evolutionary history, (2) bringing allopatric lineages of an island radiation into secondary contact. Our results put a minimum time bound on introgression (235 years), and support hybridization between species in natural close contact (parapatry), but not between those in natural allopatry brought into contact by human introduction. Time in allopatry, rather than in sympatry, appears key in the reproductive isolation of Foudia species.  相似文献   

9.
The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species‐rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum (“DB‐lineage”), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host (“GW‐lineage”). Between two populations of the DB‐lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.  相似文献   

10.
Australia has a very rich and diverse large branchiopod fauna with approximately 140 described or provisionally delimited species, but only one species of Triops, Triops australiensis (Spencer and Hall 1895), is currently recognized. Previous studies identified extensive genetic diversity within T. australiensis that suggested the presence of cryptic species. Herein, we employed an integrative approach to taxonomy to delimit putative species, integrating COI and EF1α sequence data and morphological data. Putative species were initially delimited based on COI by two computational approaches (GMYC and ABGD). The results were interpreted in the light of several species concepts, with particular emphasis on reproductive isolation. Twenty to 27 genetic lineages were delimited. Of these, up to 26 represent species following an evolutionary or phylogenetic species concept. Eighteen are biological species, though reproductive isolation could not be unambiguously established for allopatric species or species without known males. The level of co-occurrences was exceptionally high for Triops, with up to three syntopic and six sympatric species. Species delimitation was impeded by extensive overlap between intraspecific variability and interspecific variation in the genetic as well as morphological datasets. Without prior delimitation of putative species via COI, morphological delimitation would have been impossible. A potential explanation for the morphological variability is the retention of ancestral polymorphisms over long periods of time and across multiple speciation events without subsequent differentiation.  相似文献   

11.
物种形成是指由已有的物种通过各种进化机制进化出新物种的过程。持续不断的物种形成产生了地球上灿烂的生物物种多样性。然而,研究人员对物种形成的模式与机制的了解却非常有限。一直以来,谱系分裂被认为是最重要的物种形成模式,但在植物中,谱系融合,即通过杂交形成新物种的过程,也是一个非常重要的物种形成模式。经过几十年的研究才逐渐认识到,生殖隔离是差异适应和遗传漂变的副产品,而不是物种形成的前提。相比合子形成后隔离,合子形成前的隔离在物种形成过程中更早地发挥作用。合子形成前的隔离,尤其是生态地理的隔离是植物中最重要的隔离机制。一些基于QTLs分析的研究发现,基因组中的少数主效位点在物种形成中起了关键作用,并且这些位点往往受到自然选择的作用。适应性辐射往往发生在隆起的山脉和新形成的岛屿上,很可能与这些地方能够提供很多可利用的生态位有关。最新的物种形成理论认为,基因是物种形成的基本单位,不同的物种可以在非控制物种差异适应性状的位点上存在基因流。这一观点为植物物种形成的研究提供了新的思路。随着植物物种形成研究的深入,越来越多植物物种形成基因被分离,包括花色素苷合成通路和S-基因座上的一些关键基因,揭示了植物物种形成的分子机制。前期的研究主要集中在模式植物和农作物上,许多生态上非常有趣的非模式植物还未得到广泛的研究。在未来的研究中,还需要更多来自非模式植物的例子以全面理解植物物种形成的多样化机制。  相似文献   

12.
Pairs of taxa are commonly found in lichen-forming ascomycetes that differ primarily in their reproductive modes: one taxon reproduces sexually, the other vegetatively. The evolutionary processes underlying such "species pairs" are unknown. The species pair formed by Porpidia flavocoerulescens (sexual) and Porpidia melinodes (vegetative) was chosen to investigate four previously proposed hypotheses. These hypotheses posit that species pairs are either two monophyletic, independently evolving species with contrasting reproductive mode; a single outcrossing species polymorphic with regard to its reproductive modes; a sexual mother lineage frequently giving rise to asexual spin-offs; or a complex of cryptic species. The phylogenetic patterns observed within the species pair in the present study were analyzed using stringent hypothesis testing and visualizations of relationships and conflict based on tree and network reconstructions. DNA sequences at the three analyzed loci revealed the same four to five deeply divergent lineages. A detailed analysis of DNA-sequence variability revealed closely linked gene loci, but high levels of conflict within each of the gene fragments, as well as between observed genetic lineages. The observed patterns of phylogenetic relationships, linkage, and conflict are not congruent with any of the previously proposed species pair hypotheses. Rather, it is proposed that the observed results can be explained by conflicting reproductive and nutritional requirements imposed by an obligate symbiotic lifestyle. These interacting constraints produce recurring selective sweeps within predominantly vegetatively reproducing lineages and are the main forces that shape the evolution within the investigated species pair.  相似文献   

13.
Delimiting species is very conflicting in the case of very young taxa that are in the process of diversification, and even more difficult if the species inhabit a heterogeneous environment. In this case, even population delimitation is controversial. The South American genus of subterranean rodents Ctenomys is highly speciose, with 62 species that appeared in the lapse of 3 Myr. Within the genus, the ‘perrensi’ group, formed by three named species and a group of forms of unknown taxonomic status, inhabits the Iberá wetland, in northern Argentina. Almost every locality shows a particular chromosomal complement. To understand the relationships and the evolutionary process among species and populations, we examined mitochondrial DNA sequences and microsatellite genotypes. We found an isolation‐by‐distance pattern with evidence of cluster‐like behaviour of the system. The mitochondrial DNA network revealed two different groups, separated by one of the main rivers of the region. Clustering methods delimited 12 different populations and five metapopulation lineages that seem to be evolving independently. We found evidence of ancient migration among localities at the centre of the distribution but no signals of current migration among the 12 delimited clusters. Some of the genetic clusters found included localities with different chromosomal numbers, which points to the existence of gene flow despite chromosomal variation. The evolutionary future of these five lineages is controlled by the dynamics of their habitat: if stable, they may become distinct species; otherwise, they may collapse into a hybrid swarm, forming a single evolving metapopulation.  相似文献   

14.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献   

15.
We describe a software package (SpedeSTEM) that allows researchers to conduct a species delimitation analysis using intraspecific genetic data. Our method operates under the assumption that a priori information regarding group membership is available, for example that samples are drawn from some number of described subspecies, races or distinct morphotypes. SpedeSTEM proceeds by calculating the maximum likelihood species tree from all hierarchical arrangements of the sampled alleles and uses information theory to quantify the model probability of each permutation. SpedeSTEM is tested here against empirical and simulated data; results indicate that evolutionary lineages that diverged as few as 0.5N generations in the past can be validated as distinct using sequence data from little as five loci. This work enables speciation investigations to identify lineages that are evolutionarily distinct and thus have the potential to form new species before these lineages acquire secondary characteristics such as reproductive isolation or morphological differentiation that are commonly used to define species.  相似文献   

16.
Reproductive isolation is often variable within species, a phenomenon that while largely ignored by speciation studies, can be leveraged to gain insight into the potential mechanisms driving the evolution of genetic incompatibilities. We used experimental greenhouse crosses to characterize patterns of reproductive isolation among three divergent genetic lineages of Campanulastrum americanum that occur in close geographic proximity in the Appalachian Mountains. Substantial, asymmetrical reproductive isolation for survival due to cytonuclear incompatibility was found among the lineages (up to 94% reduction). Moderate reductions in pollen viability, as well as cytoplasmic male sterility, were also found between some Mountain populations. We then compared these results to previously established patterns of reproductive isolation between these Mountain lineages and a fourth, widespread Western lineage to fully characterize reproductive isolation across the complete geographic and genetic range of C. americanum. Reproductive isolation for survival and pollen viability was consistent across studies, indicating the evolution of the underlying genetic incompatibilities is primarily determined by intrinsic factors. In contrast, reproductive isolation for germination was only found when crossing Mountain populations with the Western lineage, suggesting the underlying genetic incompatibility is likely influenced by environmental or demographic differences between the two lineages. Cytoplasmic male sterility was also limited in occurrence, being restricted to a handful of Mountain populations in a narrow geographic range. These findings illustrate the complexity of speciation by demonstrating multiple, independent genetic incompatibilities that lead to a mosaic of genetic divergence and reproductive isolation across a species range.  相似文献   

17.
Reproductive isolation is central to the generation of biodiversity, yet a clear understanding of the contributions of alternative reproductive barriers to this process remains elusive. Studies of young lineages that have diverged in ecologically important traits can offer insights into the chronology and relative importance of various isolating mechanisms during speciation. In poison frogs (Dendrobatidae), within‐species lineages often differ dramatically in coloration, a trait subject to natural and sexual selection. Coloration in the strawberry poison frog (Oophaga pumilio) is particularly diverse and previous work suggests the potential for reproductive isolation. We used a captive breeding experiment to assess the extent of reproductive isolation among three allopatric, genetically distinct O. pumilio lineages that differ in coloration. We compared reproduction of within‐ and between‐lineage pairs, predicting that if lineages are isolated, within‐lineage pairs would be most successful. We also examined the fertility and productivity of F1 backcrosses of admixed offspring. We found no evidence suggesting behavioural pre‐zygotic or post‐zygotic reproductive isolation, indicating that isolation would not be maintained by intrinsic mechanisms in the event of secondary contact. Future work should address costs of between‐lineage matings exerted by extrinsic natural and/or sexual selection against admixed offspring.  相似文献   

18.
Richard L. Mayden and Kevin de Queiroz have devised and developed ‘a hierarchy of species concepts’ and ‘a unified species concept’, respectively. Although their integrated frameworks of species concepts are rather different as to how to integrate the diverse modern concepts of species, the end result is that they are likely to agree on species recognition in nature, because they virtually share the same major components (i.e. evolutionary or lineage concept of species; same way of delimiting species), and have the same important consequences. Both the hierarchical and unified frameworks, however, are interpreted to have shortcoming regarding the way of integrating the modern species concepts. I reformulate these ideas into a framework of species concepts as follows: It treats the idea of species as population‐level evolutionary lineages (sensu Wiley 1978 ) as the concept for species category, and it adopts the contingent biological properties of species (e.g. internal reproductive isolation, diagnosability, monophyly) as operational criteria in delimiting species. I also suggest that existing and revised versions of the integrated framework of species concepts all are not new species concepts, but versions of the evolutionary species concept, because they treat the evolutionary (or lineage) species concept as the concept for species category.  相似文献   

19.
The acceptance of the generalized or unified concept of species (i.e. that species are segments of population lineages) implies that an important task for systematists is to focus on identifying lineages and on testing hypotheses about the acquisition of properties such as phenotypic diagnosability, reciprocal monophyly, or mechanisms of reproductive isolation. However, delimiting species objectively remains one of the most challenging problems faced by biologists. In the present study, we begin to tackle the thorny issue of species delimitation in a complicated group of Neotropical passerine birds (the Arremon torquatus complex, Emberizidae) in which sets of characters vary substantially across space, but do not obviously vary in a concerted fashion. To earlier discussions of species limits in the group, we add a historical perspective offered by a recent molecular phylogeny, present quantitative analyses of morphological and vocal variation, and incorporate ecological niche models as a new tool that aids species delimitation by highlighting cases of ecological distinctiveness and cases where populations appear to be in independent evolutionary trajectories, despite being connected by environments unlikely to represent barriers to gene flow. We demonstrate that at least one pair of taxa (and likely another) currently treated as conspecific are, in fact, distinct lineages that merit species status under essentially any species criterion. However, other pairwise comparisons are not as straightforward owing to nonconcordant patterns of variation in different traits and to the impossibility of distinguishing which characters are causes and which are consequences of reproductive (and evolutionary) isolation. After considering several alternatives, we propose a provisional classification of the complex recognizing eight tentative species‐level taxa. Although this classification is likely to change as more detailed work is conducted, it provides a better foundation for studying the biology of these birds and helps to better describe their diversity, which is obscured when all taxa are subsumed into a single species name. The present study highlights several outstanding challenges, both practical and conceptual, for future studies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 152–176.  相似文献   

20.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号