首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large‐scale compressive tests and small‐scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet‐oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
To widen the type and scope of use of shape memory polymers (SMPs), we added hindered phenol (AO-80) to nitrile–butadiene rubber (NBR) to gain a group of AO-80/NBR rubber composites. The glass transition temperature (Tg), structure, mechanical properties, and shape memory properties of the AO-80/NBR rubber composites were characterized. It was concluded that the dispersion of AO-80 in the NBR matrix was homogeneous and intra-molecular hydrogen bonds were formed between the hydroxyl groups ( OH) of AO-80 and the cyano groups ( CN) of NBR molecular chain. The dosage of AO-80 added could be changed to tune the Tg. AO-80/NBR rubber composites revealed outstanding shape fixity and shape recovery. The method for tuning the Tg of AO-80/NBR rubber composites will provide an idea for the fabrication and design of new SMPs. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48911.  相似文献   

3.
The performance of stress recovery and shape recovery are equally important for high performance shape memory polymers (SMPs) in emerging applications. However, unlike shape recovery, stress recovery does not always follow a monotonic behavior, i.e., “stress plateau,” “stress overshoot,” and “stress undershoot” can be observed. In order to reveal the complicated stress memorization and recovery behavior, this study employs a phenomenological model which considers the recovery stress as the sum of residual programming stress, memorized stress, thermal stress, and relaxed stress for amorphous crosslinked SMPs. This model is demonstrated by a stress recovery experiment in which a polystyrene based SMP was programmed at two prestrain levels above the glass transition temperature, i.e., 20% (neo‐Hookean hyperelastic region) and 50% (strain‐hardening region), and two fixation temperatures, i.e., 20°C (below Tg) and 45°C (within the Tg region), respectively. In addition, a clear distinction between the memorized stress and recovery stress is presented. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42112.  相似文献   

4.
Glass transition temperature (Tg) is crucial in determining application areas of high temperature shape memory polymers (SMPs), but some Tgs are difficult or uneconomic to be obtained. Here we introduce a facile way to prepare high temperature SMPs with controllable Tgs from 183 to 230 °C by copolymerization of polyimides, and relationships between Tgs and diamine components of the shape memory copolyimides agree with Fox Equation. These copolyimides can fix temporary shape and return to original shape nicely, and the possible mechanisms of their high shape fixity and shape recovery are analyzed on the basis of thermomechanical properties and molecular structures. The copolymerization of shape memory polyimides has offered an effective way to obtain high temperature SMPs with desired properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44902.  相似文献   

5.
Polymer matrix composites based on brominated epoxy as the matrix and aluminum nitride (AlN) particles as the filler were prepared. The influences of the size, content, and size distribution of AlN on the thermomechanical properties, including the glass‐transition temperature (Tg), coefficient of thermal expansion (CTE), dynamic storage modulus (E′), dynamic loss modulus (E″), and loss factor (tan δ), of the composites were investigated by thermomechanical analysis and dynamic mechanical analysis. There was a total change trend for Tg; that is, Tg of the composites containing nano‐aluminum nitride (nano‐AlN; 50 nm) was lower than that of the micro‐aluminum nitride (micro‐AlN; 2.3 μm) filled composites, especially at high nano‐AlN contents. The Tg depression of the composites containing nano‐AlN was related to the aggregation of nano‐AlN and voids in the composites. On the other hand, the crosslink density of the epoxy matrix decreased for nano‐AlN‐filled composites, which also resulted in a Tg depression. The results also show that E′ and E″ increased, whereas tan δ and CTE of the composites decreased, with increasing the AlN content or increasing nano‐AlN fraction at the same AlN content. These results indicate that increasing the interfacial areas between AlN and the epoxy matrix effectively enhanced the dynamic modulus and decreased CTE. In addition, at a fixed AlN content of 10 wt %, a low E′ of pre‐Tg (before Tg temperature) and high Tg were observed at the smaller weight ratio of nano‐AlN when combinations of nano‐AlN plus micro‐AlN were used as the filler. This may have been related to the best packing efficiency at that weight ratio when the bimodal filler was used. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Three series of epoxy/SiO2 composites, containing 0.3–7 wt % nanosized SiO2 with different specific surface area, were prepared by solution blending. The resulting composites exhibit the higher glass transition temperature (Tg) than that of pure epoxy. The Tg of composite showed a maximum increment of 35.3°C by the addition of 7 wt % A300. The trade name of A300 is Aerosil 300. It is one of the fumed silica nanoparticles products of Degussa. The decomposition temperatures (Td) of composites were always higher than that of pure epoxy and showed a maximum increment of 20.8°C by the addition of 5 wt % A300. The light transmittance of composites was as a function of the SiO2 content and size. The water permeability of composites decreased with increasing SiO2 content and the 7 wt % A300 composite exhibits a maximum decrement percentage of 35.6%. The Tg, Td, storage modulus, and water‐vapor barrier property are as a function of the SiO2 content and size. These properties increased as the content of SiO2 increased. The finer SiO2 are more effective in increasing the Tg, Td, and water‐vapor barrier property. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
High thermal conductivity polyurethane shape memory polymer (SMP) composites filled with aluminum nitride (AlN) were fabricated, and their thermal and thermomechanical properties were studied. The purpose of this microstructure is to improve the thermal properties of the SMPs at low filler content. Morphology of AlN filler in polyurethane SMP matrix and the resulting thermal conductivity was also investigated. Thermal studies have shown that AlN is an effective filler for reinforcement of the polyurethane SMP and that it does not deteriorate the stable physical crosslink structure of the polyurethane, which is necessary to store the elastic energy in the service process of the shape memory material. The thermal conductivities of these SMP composites in relation to filler concentration and temperature were investigated, and it was found that the thermal conductivity can increase up to 50 times in comparison with that of the pure SMP. Furthermore, differential scanning calorimetry tests have shown a significant decrease in the glass transition temperature of the switching segment. Dynamic mechanical studies have shown that the storage modulus of the composites increase with higher AlN content in both glassy and rubbery state. Damping peak decreases and also the curve of damping becomes broader with increasing filler content. Strain fixity rate which expresses the ability of the specimens to fix their strain has been improved slightly in the presence of AlN filler but the final recovery rate of the shape memory measurement has decreased evidently. POLYM. COMPOS., 28:287–293, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
Shape memory polymers (SMPs) can keep a temporary state and subsequently recover to the original shape through a prescribed thermomechanical process. Although different theoretical models have been presented, the viscous effects were seldom considered. This article aims to provide an insight into the viscoelastic property of SMPs and its effect on the functional realization. Systematic thermomechanical experiments were performed. Special considerations were focused on the viscoelastic response of SMPs in the vicinity of the glass transition temperature Tg. The relations between shape switching transition temperature Ttran and Tg were also discussed. The results confirm that Ttran departs from Tg due to the viscoelastic effect and does not keep a constant value during heating and cooling processes. The viscoelastic effect reaches to maximum value at Tg, then decreases slowly at cooling and quickly at heating. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Highly filled systems prepared by compression molding of Hevea brasiliensis woodflour filled polybenzoxazine composites with high mechanical properties and reduced water uptake has been developed. The effects of percent filler content and particle size of woodflour on the obtained composite's properties were examined. The low melt viscosity of BA‐a type polybenzoxazine allows substantial amount of woodflour to be easily incorporated into the composites. The results showed that mechanical properties from dynamic mechanical analysis and flexural test at filler content below the optimum filler packing show approximately linear relationship with filler loading. The outstanding compatibility between the woodflour and the polybenzoxazine matrix is evidently seen from the large improvement in the composite's Tg and char yield. Scanning electron micrographs of the composite also reveals substantially strong interface between the woodflour filler and the polybenzoxazine matrix. Water absorption of the composites is greatly reduced with increasing the amount of polybenzoxazine due to the inherent low water absorption of the matrix. The polybenzoxazine is; therefore, a highly attractive candidate as high performance lignocellulosic binder or adhesive and other related applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1240–1253, 2006  相似文献   

10.
Dynamic mechanical properties were studied for epoxy resin filled with porous silica microballoons with varying surface area, pore radius, pore volume and adsorbed water. The glass transition temperature (Tg) of the composites is 12–14°C lower than the Tg of the unfilled epoxy resin. This Tg depression is attributed to the preferential adsorption of curing agents on the porous silica microballoons. Tg of the composite increases with increase in the adsorbed water on fillers. The storage modulus has a distinct correlation with the Hg-surface area of silica microballoons, which corresponds to the sum of the surface area of pores with radii larger than about 4 nm. Tan δc tan δm decreases with increasing Hg-surface area.  相似文献   

11.
Shape‐memory polymers (SMPs) have recently shown the capacity to actuate by remote heating via the incorporation of magnetic nanoparticles into the polymer matrix and exposure to an alternating magnetic field. In this study, methacrylate‐based thermoset SMP networks were synthesized through free‐radical polymerization with varying amounts of Fe3O4 magnetite (0, 1, and 2.5 wt %). Furthermore, the chemistry of the networks was controlled to maintain a constant glass transition temperature (Tg) while varying the degree of chemical crosslinking. Remote heating of the networks was shown to be a direct function of the nanoparticle concentration and independent of the chemistry. Magnetite reinforcement was shown to influence the thermomechanical properties of the networks; increasing Fe3O4 concentrations led to decreases in Tg and rubbery modulus. However, networks with a higher degree of crosslinking were more resistant to thermomechanical changes with respect to magnetite concentration. Strain to failure was shown to decrease with the addition of nanoparticles and the free‐strain shape‐memory cycle was investigated for all of the networks. Networks with lower degrees of crosslinking and high magnetite concentrations showed a significant amount of irrecoverable strain. Last, the use of remotely heated shape‐memory materials is discussed in light of potential biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
This work was aimed at the study by dynamic mechanical analysis (DMA) of dental composites consisted of a Bis‐GMA/TEGDMA (50/50 wt/wt) matrix and silica nanoparticles (Aerosil OX50) as filler, silanized with various silanes. The silanes used were 3‐[(1,3(2)‐dimethacryloyloxypropyl)‐2 (3)‐oxycarbonylamido] propyltriethoxy‐silane (UDMS), 3‐methacryloxypropyl‐trimethoxysilane (MPS), octyltrimethoxysilane (OTMS), blends of UDMS/OTMS (50/50 wt/wt), or MPS/OTMS (50/50 wt/wt). The total amount of silane was kept constant at 10% by weight fraction relative to the filler weight. The silanized nanoparticles were mixed with the dimethacrylate matrix (60% filler by weight fraction). The composites were light cured and tested by DMA for the determination of storage modulus (E′), loss modulus (E″), tangent delta (tan δ), and glass transition temperature (Tg). Measurements were performed in samples immediately after curing and samples stored in water at 37°C for 1, 7, 30, or 120 days. OTMS‐composite in which OTMS does not form covalent bond with the dimethacrylate matrix showed lower elastic modulus both in dry and wet conditions. The ability of bifunctional UDMS for crosslinking was found not to increase the elastic behavior of the composite, as it was expected, compared with that of MPS‐composite, because of the high amount of the silane used. After immersion in water the elastic modulus of OTMS‐composite remained constant, while that of the other composites increased after 1 day and then remained constant up to 120 days. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Nanocomposites (NCs) of silicone rubber and organically modified montmorillonite (OMMT) nanoparticles were prepared and characterized. It was shown that OMMT loadings of 2 and 3.5 parts per hundred resin/filler per weight (phr) produced exfoliation or delamination hybrids, whereas at a concentration of 5 phr, the filler seemed to retain its original crystallographic morphology, and the system shifted to an ordinary reinforced elastomer. Fourier transform infrared analysis, differential scanning calorimetry, and thermogravimetric analysis testing were performed for characterization and showed no effect of the nanofiller on the structural parameters of the composites, with the exception of a reduction in the crystallinity. Dynamic mechanical analysis revealed an increase in the glass‐transition temperature (Tg) at OMMT concentrations of 2 and 3.5 phr, whereas at 5 phr, Tg dropped again. Finally, mechanical testing showed an improvement in the tensile strength and stiffness, whereas improved solvent resistance was recorded by swelling experiments in toluene. This experimental study allowed us to explore the range where the OMMT filler produced NCs with silicone elastomers and, furthermore, showed that the incorporation of OMMT into silicone rubber did not introduce any chemical changes but increased the density of crosslinks; this led to a loss of crystallinity, an increase in Tg, and a significant improvement in the tensile properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Shape‐memory polymer (SMP) materials have several drawbacks such as low strength, low stiffness and natural insulating tendencies, which seriously limit their development and applications. Much effort has been made to improve their mechanical properties by adding particle or fiber fillers to reinforce the polymer matrix. However, this often leads to the mechanical properties being enhanced slightly, but the shape‐memory effect of reinforced SMP composites being drastically reduced. The experimental results reported here suggested that the mechanical resistive loading and thermal conductivity of a composite (with hybrid filler content of 7.0 wt%) were improved by 160 and 200%, respectively, in comparison with those of pure bulk SMP. Also, the glass transition temperature of the composite was enhanced to 57.28 °C from the 46.38 °C of a composite filled with 5.5 wt% hybrid filler, as determined from differential scanning calorimetry measurements. Finally, the temperature distribution and recovery behavior of specimens were recorded with infrared video in a recovery test, where a 28 V direct current circuit was applied. The effectiveness of carbon black and short carbon fibers being incorporated into a SMP with shape recovery activated by electricity has been demonstrated. These hybrid fillers were explored to improve the mechanical and conductive properties of bulk SMP. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Positive temperature coefficient of resistivity (PTCR) characteristics of poly(styrene‐co‐acrylonitrile) copolymer (SAN)/stainless steel (SS) powder (80 wt %) composites prepared by melt‐mixing method has been investigated with reference to SAN/carbon black (CB) composites. The SAN/CB (10 wt %) composites showed a sudden rise in resistivity (PTC trip) at 125°C, above the glass transition temperature (Tg) of SAN (Tg ≈ 107°C). However, the PTC trip temperature of SAN/SS (80 wt %) composites appeared at 94°C, well below the Tg of SAN. Addition of 1 phr of nanoclay increased the PTC trip temperature of SAN/CB (10 wt %) composites to 130°C, while SAN/SS (80 wt %)/clay (1 phr) nanocomposites showed the PTC trip at 101°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between SAN and SS played a key role that led to a disruption in continuous network structure of SS even at a temperature below the Tg of SAN. The dielectric properties study of SAN/SS (80 wt %) composites indicated possible use of the PTC composites as dielectric material. DMA results showed higher storage modulus of SAN/SS composites than the SAN/CB composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Highly filled graphite polybenzoxazine composites as bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC) are developed. At the maximum graphite content of 80 wt % (68 vol %), storage modulus was increased from 5.9 GPa of the neat polybenzoxazine matrix to 23 GPa in the composite. Glass transition temperatures (Tg) of the composites were ranging from 176°C to 195°C and the values substantially increased with increasing the graphite contents. Thermal conductivity as high as 10.2 W/mK and electrical conductivity of 245 S cm?1 were obtained in the graphite filled polybenzoxazine at its maximum graphite loading. The obtained properties of the graphite filled polybenzoxazine composites exhibit most values exceed the United States department of energy requirements for PEMFC applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3909–3918, 2013  相似文献   

17.
The present study focuses on finding a correlation between the positron annihilation parameters of silicone rubber polydimethylsiloxane (PDMS) composites loaded with different conductive fillers and their swelling and electrical properties. Four types of conductive fillers have been used in this study, i.e., carbon black (CB), graphite (G), copper, and nickel powders. The investigated swelling parameters for PDMS composites such as the maximum degree of swelling Qm%, the penetration rate, P, and consequently the diffusion coefficient, D, decreased with increasing the filler content due to the reduction of the size of free‐volume, which could be observed through a decrease of the probability of ortho‐positronium (o‐Ps) formation I3, that has been measured by the positron annihilation spectroscopy (PALS). Accordingly, a positive correlation has been found of 76.78% and 61.1% between Qm% and the o‐Ps lifetime τ3, representing the size of free‐volume for the CB and G filled composites, respectively. It is worthwhile, mentioning that the CB filled composites exhibit relatively low values of P, D, and Qm% as compared to the G filled composites due to the difference in the physical properties of the filler, particle size, surface area as well as the tendency of the filler particles to make aggregates. On the other hand, the variation of the diffusion coefficient with the relative fractional free‐volume Fr is found in good agreement with the Fujita's free‐volume theory. On the other hand, the electrical conductivity increases with increasing the conductive filler content. Positive temperature coefficient of conductivity (PTCC) behavior is detected, except for the composite containing 20 or 25 phr CB, which showed a metallic behavior. Besides, CB filled PDMS composites exhibit higher electrical conductivity as compared to the composites filled with the other three fillers. The electrical conductivity ln (σ) is positively correlated with the probability of free annihilation of positrons at interfaces I2, thus suggesting an increase in the electron density with the filler content. The activation energy of conduction, Ea, decreases with the increase in the loading of conductive filler. Moreover, it was noticed that Ea varies with the filler type, the values of Ea increase as the particle size of the filler increases. Finally, a correlation between the free‐volume Vf, determined by PALS with the DC electrical conductivity ln(σ) is found to be in accordance with Miyamoto and Shibayma model. POLYM. COMPOS., 34:2105–2115, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Hollow glass microbead/silicone rubber composite coatings were prepared to improve the heat-resistance and mechanical properties of silicone rubber-based composites, using CE modified SR as the matrix and HGM as the filler. The microscopic morphology and thermal stability of the composites were characterized by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. The results showed that the thermal stability of the composites increases with the increase of filler content. For the composite sample with a HGM mass content of 16.7%, the initial decomposition temperature (T5) is 408°C, which is 84°C higher than that of silicone rubber. The low density and high sphericity of HGM make it easier to uniformly disperse in the polymer matrix. In addition, compared to silica, which is commonly used as an inorganic filler, the lower thermal conductivity of HGM is also beneficial for achieving better thermal shielding effect. It is confirmed that the insufficient thermal stability of the polymer matrix above 400°C can be compensated for by the properly dispersed inorganic fillers. Therefore, the thermal stability of the composite is improved by the synergistic effect of modified heat-resistant matrix and inorganic filler.  相似文献   

19.
Measurements are reported on the cure and physical properties of an epoxy resin created using a functionalised nanosilica filler. The filled bisphenol A epoxy (Nanopox A410) contained 40 wt% silica nanoparticles and was blended with two bisphenol A resins of molecular weights of 355 and 1075 g mol?1, respectively. Cure was achieved using 3,3‐diaminodiphenylsulfone. The functionality of the mixture containing the epoxy nanoparticles was determined using NMR analysis. Cure times showed a progressive decrease with increasing silica level. Dynamic mechanical thermal analysis showed a decrease in the value of the glass transition temperature (Tg) with increasing silica level. Tg was further studied using differential scanning calorimetry. The ability of the nanosilica to create a stable network structure was demonstrated by the variation of the high‐temperature modulus with silica composition. Thermomechanical analysis carried out below and above Tg showed a progressive decrease in the expansion coefficients with increasing silica level, indicating the effectiveness of the functionalised silica nanoparticles in forming a network. The network formed during cure in the nano‐modified epoxy is unable to undergo the densification possible in the pure resin material and explains the observed lowering of Tg with increasing nanosilica content. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Molecular motion in cured epoxy resin filled with mica flakes was investigated by dynamic mechanical and broad-line nuclear magnetic resonance measurements. Temperature dependences of dynamic modulus and tanδ were determined at 10 Hz for samples containing various amounts of filler. A primary dispersion temperature, T, corresponding to the glass transition, shifts to higher temperature with increasing filler volume fraction Vf. The magnitudes of the slope parameters Hr (representing storage modulus E′ data below Tg) decreased with increasing Vf, but Hg (representing E′ data below Tg) remained nearly constant over the whole loading range studied here. NMR line shapes were observed over the temperature range from room temperature to about 200°C for unfilled and filled samples. Each sample showed a distorted line shape in the transition region where major narrowing occurs. The distorted line shape was decomposed into both broad and narrow components by Gaussian analysis. The temperature range where both components can be obtained becomes broader with increasing filler content. The possibility is set forth that the filler immobilizes the chain segments and causes a different distribution of local mobility around the junction point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号