首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A procedure for the real-time construction of three-dimensional (3-D) multiscale meshes from not evenly sampled 3-D points is described and discussed in this paper. The process is based on the connectionist model named hierarchical radial basis functions network (HRBF), which has been proved effective in the reconstruction of smooth surfaces from sparse noisy data points. The network goal is to achieve a uniform reconstruction error, equal to measurement error, by stacking noncomplete grids of Gaussians at decreasing scales. It is shown here how the HRBF properties can be used to develop a configuration algorithm, which produces a continuous surface in real time. In addition, the model is extended to automatically convert the continuous surface into a 3-D mesh according to an adequate error measure.  相似文献   

2.
Zhang C  Huang PS  Chiang FP 《Applied optics》2002,41(28):5896-5904
A microscopic three-dimensional (3-D) shape measurement system based on digital fringe projection has been developed and experimentally investigated. A Digital Micromirror Device along with its illumination optics is integrated into a stereomicroscope, which projects computer-generated fringe patterns with a sinusoidal intensity profile through the microscope objective onto the object surface being measured. The fringe patterns deformed by the object surface are recorded by a CCD camera. The microscopic 3-D shape of the object surface is measured and reconstructed by use of a phase-shifting technique. We discuss design considerations and error analysis of the system. Experimental results successfully demonstrate the capability of this technique for surface profile measurement of rough surfaces at the micrometer level.  相似文献   

3.
Bock JJ  Parikh MK  Fischer ML  Lange AE 《Applied optics》1995,34(22):4812-4816
We have developed an instrument for directly measuring the emissivity of reflective surfaces at near-millimeter wavelengths. The thermal emission of a test sample is compared with that of a reference surface, allowing the emissivity of the sample to be determined without heating. The emissivity of the reference surface is determined by one's heating the reference surface and measuring the increase in emission. The instrument has an absolute accuracy of Δε = 5 × 10(-4) and can reproducibly measure a difference in emissivity as small as Δε = 10(-4) between flat reflective samples. We have used the instrument to measure the emissivity of metal films evaporated on glass and carbon fiber-reinforced plastic composite surfaces. We measure an emissivity of (2.15 ± 0.4) × 10(-3) for gold evaporated on glass and (2.65 ± 0.5) × 10(-3) for aluminum evaporated on carbon fiber-reinforced plastic composite.  相似文献   

4.
We previously reported an ultrasonic strain measurement-based one-dimensional (1-D) shear modulus reconstruction technique using a regularization method for differential diagnosis of malignancies on human superficial tissues (e.g., breast tissues). Here, ultrasonic strain measurement-based 2-D and 3-D shear modulus reconstruction techniques are described, and the 1-D technique is reviewed and subsequently applied to various human in vivo tissues, including deeply situated tissues (e.g., liver). Because soft tissues are deformed in 3-D space by externally situated arbitrary mechanical sources, the accuracy of the low-dimensional (i.e., 1-D or 2-D) reconstructions is lower to that of 3-D reconstruction due to occurrence of erroneous reconstruction artifacts (i.e., the reconstructed modulus is different than reality). These artifacts are confirmed on simulated inhomogeneous cubic phantoms containing a spherical homogenous inclusion using numerically calculated deformation data. The superiority of quasi-real-time imaging of the shear modulus is then demonstrated by comparing it with conventional B-mode imaging and strain imaging from the standpoints of monitoring the effectiveness of minimally invasive thermal therapy as well as differential diagnosis. Because the 2-D and 3-D techniques require special ultrasonic (US) equipment, the 1-D technique using conventional US imaging equipment is used, even though erroneous artifacts will occur. Specifically, the 1-D technique is applied as a diagnostic tool for differentiating malignancies in human in vivo liver and breast tissue, and a monitoring technique for determining the effectiveness of interstitial electromagnetic wave (micro and rf) thermal therapy on human in vivo liver and calf in vitro liver. Even when using the 1-D technique, reconstructed shear moduli were confirmed to be a suitable measure for monitoring thermal treatment as well as differential diagnosis. These results are encouraging in that they will promote use of 2-D and 3-D reconstruction techniques.  相似文献   

5.
A videokeratoscope based on the imaging of a gridlike pattern is introduced. Unlike conventional videokeratoscopes that rely on Placido disks, the new measurement principle allows an exact reconstruction of the surface and the display of fine details. The experimental instrument was tested on precision glass spheres; the maximum error of the height data was less than 3 microm. The sensitivity and the potential to resolve fine details were demonstrated with irregular surfaces of specially prepared contact lenses. Structures with height deviations of 0.1 microm are well identifiable. The eyes of 18 individuals were investigated, and fine structures were found on these cornea surfaces. Conventional videokeratoscopes do not resolve such detail.  相似文献   

6.
Yip B  Fourguette DC  Long MB 《Applied optics》1986,25(21):3919-3923
The 3-D measurement of the gas concentration in a photoacoustically forced gas jet is described. A pulsed laser focused onto a laminar gas flow was used to trigger a localized disturbance which evolved with time. After a fixed time delay, the gas concentration in a 2-D cross section of the jet was measured by recording Rayleigh scattering from a second laser used to illuminate a thin sheet intersecting the flow. A series of these 2-D measurements made at the same time delay resulted in a full 3-D mapping of structures within the flow. Computer graphics enabled the subsequent reconstruction and visualization of the 3-D surfaces of constant concentration as well as the magnitude of the concentration gradient on such surfaces.  相似文献   

7.
In this work, the potential application of acoustic tomography to determine the distribution of residual stresses is discussed. Multiparameter reconstruction techniques are presented for both 2-D and 3-D residual stress states along with results from synthetic data. The effect of measurement errors on the accuracy of the reconstruction is also presented.  相似文献   

8.
Laboureux X  Häusler G 《Applied optics》2001,40(29):5206-5216
We discuss the accuracy limits for the localization of surfaces in three-dimensional (3-D) space. Such a localization is necessary for the registration of different views of an object, taken by 3-D sensors from several directions. A quantitative analysis shows that the lateral localization accuracy of a small surface area is proportional to the local curvature of the surface. This confirms the intuitive conjecture that our visual system performs localization of 3-D objects via sharp features. The longitudinal localization accuracy depends only on the noise of the data and is usually much better than the lateral localization accuracy, suggesting that surfaces are to be registered only along the longitudinal directions.  相似文献   

9.
Arasa J  Royo S  Tomàs N 《Applied optics》2000,39(25):4529-4534
We present a simple method for increasing the number of data points obtained during performance of profilometric measurements with the Ronchi test. The method is based on multiple ronchigram acquisitions that are superimposed after a few very simple data-processing operations. The measurement method, experimental setup, and data processing are described in detail from the ronchigram to the measured profile, and experimental results for a concave surface of an spherical ophthalmic lens are provided. The radius of curvature values measured for that surface are compared with the ones obtained with a high-precision radioscope, showing very good agreement and demonstrating the capability of the technique to measure topographic profiles of reflective samples.  相似文献   

10.
This paper presents a generalized analysis model for fringe pattern profilometry. We mathematically derived a new analysis model that gives a more general expression of the relationship between projected and deformed fringe patterns. Meanwhile, based on the proposed generalized model, a new algorithm is presented to retrieve 3-D surfaces from nonlinearly distorted fringes. Without any prior knowledge about the projection system, we still can obtain very accurate measurement results by using a generalized analysis model and a proposed algorithm. Computer simulation and experimental results show that the generalized model and the proposed algorithm can significantly improve the 3-D reconstruction precision, especially when the projected fringe pattern is nonlinearly distorted.  相似文献   

11.
Far-infrared fizeau interferometry   总被引:2,自引:0,他引:2  
Verma K  Han B 《Applied optics》2001,40(28):4981-4987
We present an interferometry using a far-infrared light as a tool for surface topography measurement of rough reflective surfaces. The method is based on the optical configuration of classical Fizeau interferometry, but we achieve roughness tolerance by using a long-wavelength infrared light (lambda = 10.6 mum). The method is called far-infrared Fizeau interferometry. We conducted a rigorous mathematical analysis to describe the true intensity distribution of fringe patterns while considering multiple reflections and surface roughness. The mathematical derivation is verified with experimental data obtained from specimens with various values of reflectivity and roughness. The effect of reflectivity and roughness on fringe contrast is discussed.  相似文献   

12.
As a differential diagnosis technique for living soft tissues, we are developing ultrasonic-strain-measurement-based shear modulus reconstruction methods. Previously, we reported three-dimensional (3-D) and 2-D reconstruction methods utilizing a typical Poisson's ratio very close to 0.5 (nearly-incompressible). However, because a decrease in the accuracy of the reconstructed value was confirmed to be due to the difference between the original value and the set value, we proposed 3-D and 2-D methods of reconstructing Poisson's ratio as well. Furthermore, we proposed methods of reconstructing density and dealing with dynamic deformation. However, due to tissue incompressibility, the reconstructions of shear modulus, Poisson's ratio, and density became unstable. In this report, to obtain stable, unique reconstructions, we describe a new reconstruction method using mean normal stress approximated by the product of one of Lame's constants X and volume strain epsilon alpha alpha as an unknown. Regularization is simultaneously applied to the respective distributions to decrease the instability of the reconstructions due to measurement errors of the deformation. This method also enables stable, unique reconstructions of shear modulus and density under the condition that the mean normal stress remains unknown. We also verify the effectiveness of this method through 3-D simulations, while showing erroneous artifacts occurring when 2-D and 1-D reconstructions are performed.  相似文献   

13.
An original method is presented to improve fracture surface characterization through an accurate three-dimensional (3-D) reconstruction. The method, based on digital image-processing techniques, was developed under the Khoros system. The reconstruction technique is based upon the stereoscopic principle to extract the surface local elevations from the stereo-pair images. The fractographs that compose the stereo pair are obtained by scanning electron microscopy from two points of view by tilting the object at two observation angles. The first step of image processing is the alignment of the two images. Next, an iterative processing based on the cross-correlation operation builds a very dependable high resolution elevation map of the fracture surface. Finally, the elevation map can be used to provide a 3-D perspective view of the surface by using various visualization tools. Also, profiles and horizontal sections are generated by sectioning the 3-D reconstructed surface.  相似文献   

14.
网格投影式立体视觉三维表面重建系统   总被引:7,自引:1,他引:6  
提出了一种基于立体视觉的三维表面重建的新方法。该方法以立体视觉为基础,结合网格投影,把被动的立体视觉与主动的非结构光网格投影相结合,采用一种算法简单的由粗到精网格图像立体匹配方法,有效地解决了常用的立体视觉系统中存在的算法复杂、处理时间长、容易产生误匹配等问题。基于该方法的三维表面重建系统具有结构简单、操作方便、数据采集速度快、实时性强等优点。实验结果表明该系统能够有效地对三维表面,特别是对无明显特征的光滑自由三维曲面进行重建。  相似文献   

15.
16.
Gao F  Tanikawa Y  Zhao H  Yamada Y 《Applied optics》2002,41(34):7346-7358
Although a foil three-dimensional (3-D) reconstruction with both 3-D forward and inverse models provide, the optimal solution for diffuse optical tomography (DOT), because of the 3-D nature of photon diffusion in tissue, it is computationally costly for both memory requirement and execution time in a conventional computing environment. Thus in practice there is motivation to develop an image reconstruction algorithm with dimensional reduction based on some modeling approximations. Here we have implemented a semi-3-D modified generalized pulse spectrum technique for time-resolved DOT, where a two-dimensional (2-D) distribution of optical properties is approximately assumed, while we retain 3-D distribution of photon migration in tissue. We have validated the proposed algorithm by reconstructing 3-D structural test objects from both numerically simulated and experimental date. We demonstrate our algorithm by comparing it with the calibrated 2-D reconstruction that is in widespread use as a shortcut to 3-D imaging and proving that the semi-3-D algorithm outperforms the calibrated 2-D algorithm.  相似文献   

17.
Schön N  Häusler G 《Applied optics》2006,45(25):6539-6550
We describe a new method to register surface data measured by optical three-dimensional (3-D) sensors from various views of an object. With our method, complete 3-D models of objects can be generated without user interaction. Circumferential acquisition of 3-D objects is done by taking several views from different directions. To generate a complete 3-D-model, the views must be aligned with each other. This process is called registration and is commonly done interactively by searching for so-called corresponding points in the different views and by use of these points to calculate the appropriate rotation and translation. Our approach is based on automatically finding points that are eye catching or salient compared with other surface points. We derive a quantitative measure of point salience and a feature definition for free-form surfaces by introducing a concept to measure pragmatic information. Experiments confirm that our salient points can be robustly located on general free-form surfaces, even if there are no corners or edges. Furthermore, the neighborhoods of the salient points are highly distinguishable from each other. This results in a large reduction of the complexity of the subsequent geometric matching. The computing time is only a few seconds. We present results from various fields of application.  相似文献   

18.
Hou H  Yi K  Shang S  Shao J  Fan Z 《Applied optics》2005,44(29):6163-6166
A total integrated scattering (TIS) measurement was performed to investigate the surface and volume scattering of K9 glass substrates with low reflectance. Ag layers with thicknesses of 60 nm were deposited on the front and back surfaces of the K9 glass substrates by the magnetron sputtering technique. Surface scattering of the K9 glass substrate was obtained by the TIS measurement of the Ag layers on the assumption that the Ag layers and the K9 substrate had the same surface profile. Volume scattering of the substrates was deduced by subtracting the front and back surface scattering from the total scattering of the substrates.  相似文献   

19.
There is an increasing interest in wide-angle imaging of the environment using curved reflective surfaces. With this comes the need for appropriate filtering and processing of the acquired images. Here we present a technique for homogeneous, fast filtering of panoramic images captured using a camera and a wide-angle-imaging reflective surface. Imaging of the panoramic environment onto a two-dimensional (2-D) plane necessarily introduces spatial distortions such as stretching and bending that vary with the viewing direction. Therefore, if the panoramic image is to be filtered homogeneously in all viewing directions, it is necessary to match the filtering to the distortions. We show how this can be accomplished. The image acquired by the camera is first digitally unwarped and represented in Cartesian coordinates representing azimuth and elevation. The mappings of patches of uniform size and shape on the viewsphere are then established. Next, for each filter patch the local mappings of great circles along two principal axes (along the local longitudinal and elevational directions) on the image plane are determined. The mappings of these great circles are used to perform the 2-D convolution required by the filtering operation. Convolution along the directions of local, mutually orthogonal great circles permits the filtering to be carried out in a quasi-separable fashion, resulting in increased computational speed and efficiency. Examples of homogeneous filtering using this procedure are presented.  相似文献   

20.
Acoustic NDT methods like ultrasonic echo and impact-echo are successfully used for NDT of concrete structures. This paper describes useful techniques for a detailed experimental study of the elastic wave propagation, which is highly relevant for the interpretation of the results obtained from practical measurement applications. By using a scanning laser vibrometer it becomes possible to obtain a 2D visualization of the elastic waves propagating along the surfaces of concrete specimens. Time slices are prepared so that the wave field becomes apparent. In order to visualize especially the surface wave propagation a similar technique using a scanning system with a piezoelectric sensor is applied. The results obtained provide an appropriate basis for the comparison with numerical results from 3-D Elastodynamic finite integration technique (EFIT) calculations, which is demonstrated here. Examples are presented for the application with phased array ultrasonic echo, air-coupled ultrasonic echo and impact-echo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号