首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Part 1 of this two-part series of papers, phase abundances, lattice parameters, crystallite sizes, and microstructures of three series of AB2-based metal hydride alloys were studied. The base alloys with B/A stoichiometry of 2.0 in series 177, 190, and 193 are rich in C14, equal in C14/C15, and rich in C15 phases, respectively. In each series of alloys, the B/A stoichiometry varies from 1.8, 1.9, 2.0, 2.1, to 2.2. The effects of varying B/A stoichiometry to microstructures are the same for these three series of alloys. As the alloy formula changes from AB1.8, AB1.9, AB2.0, AB2.1, to AB2.2, the following events occur: C14-to-C15 phase ratio decreases, both C14 and TiNi secondary phase lattice parameters and unit cell volume reduce; the a/c aspect ratio of C14 phase first decreases and then increases; abundances of non-Laves secondary phases decrease; and the Zr/Ti ratio in AB phase decreases. The C14/C15 ratio is closely related to the average electron density with a threshold that first decreases from 7.13 (AB1.8) to 7.08 (AB1.9) and to 7.06 (AB2.0) and then increases to 7.08 (AB2.1) and 7.09 (AB2.2) as the stoichiometry increases. The distributions of B-site elements are not uniform with most of the V, Cr, Mn, Co residing in AB2 phase and Sn in Zr7Ni10 phase.  相似文献   

2.
The effects of high temperature hydrogen annealing were studied on powders made by gas atomization of both conventional vanadium-containing AB2 metal hydride alloys and new vanadium-free AB2 alloys designed for high power and low self-discharge applications. In both alloy systems, annealing in 950 °C hydrogen for 30 min was proven to be effective in improving the capacity, formation, high power, and low temperature performance in the nickel metal hydride battery compared to previous gas atomization trials where each property was reduced. The advantage in improving the cycle life by gas atomization was further extended by the hydrogen annealing process. Reduction in the surface oxide was confirmed by the use of Auger electron spectroscopy depth profiling and magnetic susceptibility. Metallic elements were reduced from the oxide state by hydrogen to react with the metallic nickel particulates originally embedded in the surface oxide in a high temperature environment and created a new surface free of oxygen.  相似文献   

3.
In Part 2 of this two-part series of papers, gaseous hydrogen storage and electrochemical properties of three series of alloys with different combinations of Cr/Mn/Co ratios are studied and compared to the structural properties reported in Part 1. As the B/A stoichiometry in each series of alloys increases from 1.8 to 2.2, systematic trends in certain storage properties are found: the hydrogen dissociation pressure and heat of hydride formation increases; the alloy with a AB2.0 stoichiometry has the highest electrochemical full capacity; and slightly higher and lower B-contents increase the electrochemical high-rate-dischargeability and gaseous phase maximum storage capacity, respectively. Stoichiometric or slightly hyper-stoichiometric AB2 alloys have lower PCT hysteresis which are expected to reduce pulverization during cycling. The full and high-rate discharge electrochemical capacities correlate well with the maximum and reversible gaseous hydrogen storages, respectively. Slight hyper-stoichiometry increases the high-rate dischargeability. Open circuit voltage, an important parameter in high-power application, is also found to be more relevant to the surface reaction than to the bulk hydride stability.  相似文献   

4.
In this paper we have compared nickel/metal hydride batteries made from AB5 and Nd-only A2B7 alloys with or without addition of hydrogen peroxide (H2O2). The biggest advantages Nd-only A2B7 alloys have over AB5 alloys are: a higher positive electrode utilization rate, lower initial internal resistance and less resistance increase after a 60 °C storage, and higher capacity and resistance degradation during cycling. The hydrogen peroxide was used as an oxidation agent and was added into the electrolyte before closing the cells. The H2O2 can oxidize both Co(OH)2 in the positive electrode and MH alloy in the negative electrode. From the test results, H2O2 oxides the MH alloy preferentially over the Co(OH)2 in the case of AB5 alloy. This preferential oxidation is reversed in the case of the A2B7 alloy in which Co(OH)2 is oxidized first. In cells made from both alloys, the addition of H2O2 prevented the venting of cells during formation, increased the utilization of positive electrode, improved the 60 °C charge retention, and increased the mid-point voltage after 300 cycles. Additionally the H2O2 also improved the cell balance for A2B7 alloy by decreasing the over-discharge reservoir in the negative electrode and reducing the capacity degradation in A2B7 alloy. However, the addition of H2O2 in cells made with AB5 alloy deteriorated the cell balance by increasing the over-discharge reservoir in the negative electrode. The different cell balance and failure mechanisms for the two alloy compositions and H2O2 additive were compared and discussed.  相似文献   

5.
In this paper, we describe and discuss the synthesis, structural-microstructural and hydrogen storage behaviour of three AB2 type storage materials namely (a) ZrFe2, (b) Zr(Fe0.75V0.25)2 and (c) Zr(Fe0.5V0.5)2. These alloys were synthesied by radio frequency induction melting in argon atmosphere. X-ray diffraction and transmission electron microscope have been employed for structural and microstructural characterizations. The XRD study reveals that the lattice constants and the unit cell volume of ZrFe2, Zr (Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 alloys, which has C14 type hexagonal Laves phase. The Surface morphology and elemental composition of these alloys were investigated by scanning electron microscope and energy dispersive X-ray analysis. The pressure composition isotherms of these alloys were investigated at room temperature and pressure ranges of 0–100 atm respectively, measured through a fully computerized PCI apparatus. As we increase the concentration of V (substituted for Fe), the total hydrogen storage capacities increased up to 1.45 wt%. This capacity is achieved in Zr(Fe0.5V0.5)2 alloy, while the reversible hydrogen storage capacity decreases due to the formation of a stable hydride phase. It has been found that the lattice constants increase with higher vanadium concentration. This is indicating that the majority of vanadium atoms reside in the B-site. The broader X-ray diffraction peaks observed in Zr(Fe0.5V0.5)2 alloy indicates a higher degree of disorder for alloys with the higher V-content. The yet another interesting feature observed in our present study is that the plateau pressure remains well below 1 atm for all the compositions.  相似文献   

6.
The microstructure and electrochemical hydrogen storage characteristics of (La0.7Mg0.3)1−xCexNi2.8Co0.5 (x = 0, 0.05, 0.10, 0.15 and 0.20) alloys have been investigated. The results show that all alloys consist of (La, Mg)Ni3 and LaNi5 phases. The cyclic stability (S100) of the alloy electrodes increases from 58.7% (x = 0) to 69.8% (x = 0.20) after 100 charge/discharge cycles. The high rate dischargeability (HRD) increases from 66.8% (x = 0) to 69.6% (x = 0.10), then decreases to 65.1% (x = 0.20) at the discharge current density of 1200 mA/g. Moreover, the electrochemical kinetic characteristics of the alloy electrodes are also improved by increasing Ce content.  相似文献   

7.
The influence of multiple additions of two oxides, Cr2O3 and Nb2O5, as additives on the hydrogen sorption kinetics of MgH2 after milling was investigated. We found that the desorption kinetics of MgH2 were improved more by multiple oxide addition than by single addition. Even for the milled MgH2 micrometric size powders, the high hydrogen capacity with fast kinetics were achieved for the powders after addition of 0.2 mol% Cr2O3 + 1 mol% Nb2O5. For this composition, the hydride desorbed about 5 wt.% hydrogen within 20 min and absorbed about 6 wt.% in 5 min at 300 °C. Furthermore, the desorption temperature was decreased by 100 °C, compared to MgH2 without any oxide addition, and the activation energy for the hydrogen desorption was estimated to be about 185 kJ mol−1, while that for MgH2 without oxide was about 206 kJ mol−1.  相似文献   

8.
A series of Fe-substituting cobalt C14-predoninating AB2 alloys with the general formula Ti12Zr21.5V10Cr7.5Mn8.1FexCo8−xNi32.2Sn0.3Al0.4 (x = 0-5) were studied for the impacts of Fe to structure, gaseous, and electrochemical hydrogen storage properties. All alloys exhibit hyper-stoichiometric C14 main phase due to the formation of A-rich non-Laves secondary phases and the loss of Zr and Ti in the melt. Lattice parameters together with the unit cell volume increases and then decreases with increasing Fe-content which indicates the existence of anti-site defects. The amount of TiNi secondary phase increases with the increase of Fe-content up to 4% and shows a detrimental effect to the high-rate dischargeability of the alloys. Most of the gaseous storage characteristics remain unchanged with the addition of Fe. In the electrochemical properties, Fe-addition in the AB2 alloys facilitates activation, increases the total electrochemical capacity and effective surface reaction area, decreases the half-cell high-rate dischargeability and bulk hydrogen diffusion, and deteriorates both −10 and −40 °C low-temperature performance. Fe-substituting Co in AB2 alloys as negative electrode of nickel metal hydride battery can reduce the raw material cost with the trade-off being mainly in the low-temperature performance.  相似文献   

9.
The hydrogen desorption properties of Magnesium Hydride (MgH2) ball milled with cassiterite (SnO2) have been investigated by X-ray powder diffraction and thermal analysis. Milling of pure MgH2 leads to a reduction of the desorption temperature (up to 60 K) and of the activation energy, but also to a reduction of the quantity of desorbed hydrogen, referred to the total MgH2 present, from 7.8 down to 4.4 wt%. SnO2 addition preserves the beneficial effects of grinding on the desorption kinetics and limits the decrease of desorbed hydrogen. Best tradeoff – activation energy lowered from 175 to 148 kJ/mol and desorbed hydrogen, referred to the total MgH2 present, lowered from 7.8 to 6.8 wt% – was obtained by co-milling MgH2 with 20 wt% SnO2.  相似文献   

10.
Hydride-forming alloys are used as components of the negative electrode of nickel-metal hydride (NiMH) batteries. In previous works, the study of Zr-based AB2-type alloys indicated that the material without heat treatment (annealing) had better electrochemical characteristics than the annealed one. The effect was attributed to the presence of secondary phases ZrxNiy formed during the solidification of the alloy button obtained by arc melting, and to the fact that these phases diminished their concentration or disappeared upon annealing. The main secondary phases formed by microsegregation are Zr7Ni10, Zr9Ni11 and Zr8Ni21.  相似文献   

11.
Magnesium hydrogenation being an exothermic reaction, the loading time of a tank is limited by heat extraction. The compaction of ball-milled MgH2 associated with Expanded Natural Graphite was used to improve the thermal conductivity of the resulting compacts. Taking advantage of these compacts, an intermediate scale tank (1.8 kg MgH2) cooled down by forced air circulation was designed. The absorption is initiated at 90 °C. Since the intrinsic kinetic is not the limiting factor, the hydrogen pressure does not affect the loading process. The loading time is strongly dependent on the cooling efficiency. However, beyond a given air flow rate it doesn’t decrease any more, the heat transfer being limited by the thermal conductivity of the compacted disks. During desorption, the maximum hydrogen flow (25 Nl/mn) is directly proportional to the thermal power of the heating system. The tank absorbs 1170 Nl, has a specific-energy of 270 W h/kg and a system volumetric-density of 42 gr/l.  相似文献   

12.
In two-phase domains, the plateau pressure of hydride forming materials (such as intermetallic compounds or IMCs) depends markedly on the operating temperature (Van’t Hoff relationships). Therefore, for practical applications, it is necessary to select hydrogen storage materials by considering the thermal environment of the hydride tank. The thermodynamic properties (absorption and desorption pressure plateaux) of IMCs can be adjusted to some extend by chemical alloying with foreign metals and substitution on different crystallographic sites. In this paper, we report on the hydriding kinetics of substituted AB5 compounds. Isotherms have been measured at different temperatures on LaxNd1−xNi5 (x ≈ 0.2) and LaxCe1−xNi5 (x ≈ 0.3) compounds. Pneumato-chemical impedance spectroscopy has been used to analyze the hydriding kinetics and to determine microscopic rate parameters associated with surface dissociation of molecular hydrogen, diffusion-controlled transport of atomic hydrogen to bulk regions and hydride formation. Results have been compared to those measured on LaNi5 and the interest of using such substituted compounds for application in auxiliary power units is discussed.  相似文献   

13.
The structure, gaseous storage, and electrochemical properties of Mo-modified C14-predominant AB2 metal hydride alloys were studied. The addition of Mo expands the unit cell volume and stabilizes the metal hydride. This increased metal-to-hydrogen bond strength reduces the equilibrium plateau pressure, reversible hydrogen storage, and the high-rate dischargeability in the flooded cell configuration, but not the high-rate dischargeability in the sealed cell configuration. The low-temperature performance was improved by the addition of Mo through increases in bulk diffusion rate, surface area, and surface catalytic ability. The increase in bulk diffusion is the result of smaller crystallites and larger AB2-AB2 grain boundary densities. The increase in surface area is due to the high solubility of Mo in alkaline solution. Even with a higher leaching rate, the Mo-containing alloys still have strong corrosion resistance which contributes positively to both the charge retention and the cycle life performances. As the Mo-content in the alloy increases, the low temperature performance improves at the expense of a lower capacity.  相似文献   

14.
A study on the hydrogen storage properties of flexible and porous La0.8Mg0.2Ni3.8/PVDF (polyvinylidene fluoride) composite was reported. In this composite, PVDF acted as a binder to connect the alloy powders and (NH4)2CO3 as a pore-forming agent to create void space. Increasing PVDF content, the hydrogen absorption kinetics of the composite gradually decreased. Increasing (NH4)2CO3 from 1% to 5%, the capacity firstly increased and then decreased. 0.08–0.13 wt% increased capacity for the composite was observed at 70 °C by comparison with the intrinsic composite (La0.8Mg0.2Ni3.8/1%PVDF). Varying temperature from 0 °C to 100 °C, 0.1–0.15 wt% increased capacity were obtained for the typical porous composite (La0.8Mg0.2Ni3.8/1%PVDF/3%(NH4)2CO3). The PVDF-assisted composite showed the flexible/solidified characteristic in hydriding/dehydriding, which maybe lowed down the oxidation of the alloy powders and preserved the void space. Finally, ∼0.1 wt% increased capacity remained after ten hydriding/dehydriding cycles.  相似文献   

15.
Magnesium hydride with 7 wt.% of various metal halide additives (ZrF4, TaF5, NbF5 and TiCl3) were ball milled, and the influence of these dopants on the kinetics of absorption and desorption was studied. The pressure-composition-temperature isotherms (P-C-T) measured by Sieverts’ apparatus did not show thermodynamic changes in the studied materials. Moreover, XPS studies demonstrated that the metal halides used in this study (except ZrF4) took part in the partial and full disproportionation reactions directly after milling and the first desorption/absorption cycle. The catalytic effect of metal halides on the Mg hydrogenation/dehydrogenation process was caused by the formation of pure transition metal and/or the MgF2 phase, which led to the influence of two simultaneous factors on the sorption properties of the MgH2.  相似文献   

16.
We analyzed the sorption cycling behavior of LaNi5 and LaNi4.73Sn0.27 alloys in H2 containing 10 and 100 ppm of CO. The effect of temperature was studied for the Sn-containing alloy. When cycling in the presence of CO, we found the reaction was strongly retarded due to surface contamination but no loss of capacity was observed when samples were given enough time for both absorption and desorption. The retardation was stronger at lower temperatures and higher CO concentration. The results also indicate that a fraction of the adsorbed CO is released during the desorption process. For the Sn-containing alloy, a stationary state is met after about 10 cycles, with no further degradation occurring past this point. The retarding factor at 40 °C and 100 ppm in this condition, with respect to the kinetics in pure hydrogen, is of about 600.  相似文献   

17.
Nickel–manganese alloys were coated from sulphate baths by electrodeposition with ‘Packed Bed’ technique on the surface of proprietary lanthanum rich non-stoichiometric MlNi3.03Si0.85Co0.60Mn0.31Al0.08 (Ml = lanthanum rich misch metal) hydrogen storage alloy particles. The structure and nature of the microencapsulated alloys were characterized using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR). The hydrogen evolution reaction (HER) was investigated in 6 M KOH at 30 °C by galvnostatic cathodic polarisation technique. The effects of Ni/Mn ratio in the bath and deposition current density were studied. Among the investigated depositions, Ni150Mn100 (30) and Ni150Mn10 (60) (concentration of Ni and Mn salts in electrodeposition bath given in grams per liter; electrodeposition current density (CD) given within brackets in milliamphere per square centimeter) coated samples exhibited the highest activity towards the HER. It can be concluded that disordered paramagnetic coatings with Ni concentrations above 80 at.% exhibit higher catalytic activity towards HER. The Tafel mechanism is the easiest pathway for HER on most of the studied coatings. However, some of the Ni-rich coatings prefer the Volmer–Tafel path and one sample [Ni150Mn150 (80)] prefers the Heyrovsky–Volmer path.  相似文献   

18.
Commercial metal nanoparticles of Fe, Co, Ni, Cu, Zn were added to MgH2 by ball-milling to improve the kinetics of hydrogen release and the reversibility during successive absorption/desorption cycles. metal nanoparticles were well dispersed into the MgH2 matrix without formation of any ternary metal hydrides, nor binary compounds. Activation energy values were determined for the various samples by temperature programmed desorption experiments while the hydride formation enthalpy was deduced from Van't Hoff equation starting from high pressure volumetric isotherms acquired at different temperatures. The presence of transient effect during the absorption process was excluded by comparing successive hydrogenation/dehydrogenation cycles recorded at 350 °C on Ni and Fe-containing samples. Information about hydrogen absorption kinetics was also obtained. Promisingly, the Ni, Fe, and Co containing samples have shown a good stability, enhanced catalytic performance, and high rate of hydrogen absorption while Zn and Cu nanoparticles worked more like inhibitors than activators.  相似文献   

19.
Hydrogen separation with dense ceramic membranes is non-galvanic, i.e. it does not require any electrode or an external power supply to drive the separation, and the hydrogen selectivity is almost 100% because the membrane contains no interconnected porosity. In this study, a mixed proton-electron conducting perovskite made from BaCe0.9Y0.1O3-δ (BCYO) was prepared using a solid-state reaction, whereas a rapidly solidified Zr-based alloy (RSZ) was obtained via a melt-spinning process at a specified cooling rate. Finally, the BCYO/RSZ composite membrane was successfully fabricated by aerosol deposition (AD) at room temperature. The powders and composite membranes were characterized by high-temperature X-ray diffraction (HTXRD), particle size analysis (PSA), scanning electron microscopy (SEM), and X-ray elemental mapping (XRM). The hydrogen permeability of the dense BCYO/RSZ composite membrane was measured with the change of temperature. Under a pure hydrogen atmosphere at 773 K-1073 K, the BCYO/RSZ composite membrane exhibited higher permeability compared with the sole BCYO membrane over the entire investigated temperature range.  相似文献   

20.
Stability of AB2 alloy in Laves phases C14 and C15 were studied by first-principle density functional theory simulations. A range of different combinations of B and C elements in the Ti1−xCxB2 alloys were considered. The formation energies of these alloys generally increase with the unit cell volumes of alloys. The volume also affects the stability of the corresponding metal hydride. We find that the formation energies and the hydrogenation enthalpies of AB2 alloys are likely to be determined by at least three factors: electronegativity, atomic radius and covalent radius. The enthalpies of AB2 hydrides increase with increasing compositionally-averaged electronegativity and volume change upon hydrogenation. However, the enthalpies of AB2 hydrides decrease with increasing compositionally-averaged atomic and covalent radii. This study provides useful insights for future exploration of AB2-type alloys for hydrogen storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号