共查询到20条相似文献,搜索用时 78 毫秒
1.
张继钢吴良峥乔慧婷陈雯 《控制工程》2023,(11):2134-2142
电网工程主要原材料价格变动对电网工程的造价控制有着重要影响。为提高主材价格的预测精度,提出了一种基于自适应噪声完备集合经验模态分解和门控循环单元的电网工程主材价格多步预测方法。首先对原始价格序列进行分解,随后根据分解所得的各子序列的模糊熵值进行聚类。对模糊熵值较大的聚合序列进行变分模态分解,分解所得的各子序列利用GRU模型进行多步预测;对模糊熵值较小的各聚合序列直接进行多步预测。基于真实数据对所提预测方法的性能进行了实验,结果表明所提方法在预测精度上有明显提升,对电网工程材料价格预测具有较大的参考价值。 相似文献
2.
短时交通流预测是实现交通流诱导与控制的重要保障,鉴于交通流的随机性和复杂性,提出基于自适应噪声完全集合经验模态分解(CEEMDAN)的短时交通流组合预测模型。利用CEEMDAN算法对非线性序列具有自适应分解的特性,将交通流时间序列通过CEEMDAN分解为频率不同、复杂度不同的多个时间序列分量;利用PE算法分析各个分量的随机特性,根据时间序列分量的不同随机特性分为高频序列分量、中频序列分量和低频序列分量,根据高频、中频和低频序列分量的随机特性分别建立GWO-BP模型、GWO-LSSVM模型和ARIMA模型进行预测;叠加高频、中频和低频各个分量的预测结果,得到短时交通流最终预测值。仿真分析结果表明,与其他预测模型相比,基于CEEMDAN分解的短时交通流组合预测模型提升了预测精度。 相似文献
3.
《计算机应用与软件》2019,(4)
针对非饱和机场能耗时间序列的非线性和非平稳性特点,提出一种基于两步分解法和季节差分自回归滑动平均模型相结合的组合预测法。利用自适应噪声完整集成经验模态分解法和样本熵,将原始能耗时间序列分解为从高频至低频且复杂度不同的分量。再利用变分模态分解法对高频复杂分量再次分解,得到一系列呈现弱非线性且相对平稳的子序列。采用季节差分自回归滑动平均(SARIMA)模型对各子序列进行建模预测,将各子序列预测结果叠加得机场能耗预测值。实验结果表明,该方法可以有效提高非饱和机场能耗的预测精度。 相似文献
4.
风功率预测是实现风电场监控及信息化管理的重要基础,风功率超短期预测常用于平衡负荷、优化调度,对预测精度有较高的要求。由于风电场环境复杂、风速不确定性因素较多,风功率时序信号往往具有非平稳性和随机性。循环神经网络(RNN)适用于时间序列任务,但无周期、非平稳的时序信号会增加网络学习的难度。为了克服非平稳信号在预测任务中的干扰,提高风功率预测精度,提出了一种结合经验模态分解与多分支神经网络的超短期风功率预测方法。首先将原始风功率时序信号通过经验模态分解(EMD)以重构数据张量,然后用卷积层和门控循环单元(GRU)层分别提取局部特征和趋势特征,最后通过特征融合与全连接层得到预测结果。在内蒙古某风场实测数据集上的实验结果表明,与差分整合移动平均自回归(ARIMA)模型相比,所提方法在预测精度方面有将近30%的提升,验证了所提方法的有效性。 相似文献
5.
负荷预测对于电力企业制定未来调度计划十分重要。为了进一步提高预测精度,充分挖掘负荷数据中时序特征的联系,提出一种卷积神经网络(Convolutional Neural Networks, CNN)、门控循环单元(Gate Recurrent Unit, GRU)和多元线性回归(Multiple Linear Regression, MLR)混合的多频组合电力负荷预测模型。该模型先对时间序列的负荷数据进行集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD),并将其重构为高低两种频率;同时在高频中引入影响因子较大的气象因素,使用CNN-GRU模型预测,低频部分使用多元线性回归进行预测;最后将各个模型得出的预测结果叠加,得到最终预测结果。仿真结果表明,相对于其它网络模型,提出的混合模型具有更高的预测精度,是一种有效的短期负荷预测方法。 相似文献
6.
在煤矿井下复杂环境下,传统瓦斯浓度预测模型的预测精度较低,虽然通过引入各种优化算法对传统瓦斯浓度预测模型进行优化,提高了瓦斯浓度预测精度,但仅从时间维度进行建模,忽略了瓦斯浓度的空间特性,易导致重要先验知识丢失,影响预测效果。针对上述问题,提出一种基于图卷积神经网络(GCN)和门控循环单元(GRU)的瓦斯浓度时空分布预测模型。首先,对瓦斯浓度历史数据进行预处理,根据各采集节点间的空间距离,构建瓦斯浓度空间节点图,用于对节点间复杂的依赖关系进行建模。然后,在每个采样时间点,将瓦斯浓度和节点间的距离权重参数作为输入,获得瓦斯的空间节点图结构后,通过GCN进行空间特征自适应学习和图卷积运算,得到瓦斯浓度的空间特征,再将瓦斯浓度的空间特征信息转化为序列数据,输入到GRU。最后,GRU对时间序列下各时刻组成的瓦斯空间特征信息进行处理,通过基于序列到序列模型和自动编码器,生成模型预测结果。试验结果表明:(1) GCN-GRU模型能够较为准确地预测瓦斯浓度的总体变化趋势,预测结果与实际数据的拟合度优于历史平均(HA)模型和支持向量回归(SVR)模型。(2) GCN-GRU模型的均方根误差较HA模型、... 相似文献
7.
为提高PM2.5长期预测精度,以空气污染物与气象因素作为影响因子,提出一种基于深度学习的TSMN(time series memory network)预测模型.该模型由两个组件构成,本地记忆组件利用外部记忆方式提高模型长程记忆能力,并与多站点空间关系建模的邻域组件协同从时空角度完成PM2.5长期预测.通过使用不同评价指标将TSMN模型与多种模型进行对比,其中与性能较优的CNN-LSTM模型相比,该模型的RMSE、MAE分别下降5.2%、5.7%,R2提升7.5%.实验结果表明TSMN模型能够有效提高PM2.5浓度的长期预测精度. 相似文献
8.
传统时序预测方法其预测过程无法在相同数据集上推出共享模式, 而机器学习方法无法较好地处理非线性和大规模数据集, 并且需要手动设计特征工程. 深度学习方法弥补了传统预测方法需要高计算高人力的弊端, 用自动学习特征工程代替了手动设计特征工程. 但仅使用深度学习的预测方法所作结构假设较少, 通常需要较高的计算资源以及大量的数据来学习得到准确的模型. 针对上述问题, 本文提出通过采用融合t检验的EMD经验模态将序列分为高频分量和低频分量, 对高频分量使用传统STL序列分解方法进一步对数据做处理, 对高频、低频分量分别进行Prophet预测. 实验结果表明, 相较于传统的LSTM以及Prophet预测模型, 经过STL序列分解后的周期数据能够提升模型的整体预测精确度而融合EMD经验模态的Prophet模型则大大提升了训练效率. 相似文献
9.
10.
基于深度学习的细粒度污染物浓度预测是一种新兴且具有前景的方法,如何充分利用气象、空间和时间等3大信息是其关键.为了协同融合3大信息,提出一种基于多尺度时空图神经网络的污染物浓度预测模型.该模型利用空气质量模型动态构建多尺度的时空图神经网络,学习污染物之间的动态时空关系.具体为:利用图神经网络学习污染物之间的多尺度空间关系,采用空气质量模型HYSPLIT构建图的结点和边属性,通过基于注意力机制的GRU (gate recurrent unit)学习污染物浓度之间的时序关系.该模型不仅充分考虑了气象、空间和时间3大影响因素,还将3个因素联动起来统一到一个框架内协同学习.该方法与传统的机理模型方法相比具有灵活部署、易于实施的特点.实际项目数据集和公开数据集上的实验表明:与现有先进的基于图神经网络的方法相比,该方法预测的污染物浓度平均绝对误差降低了0.6左右,对称平均绝对百分比误差降低0.005左右. 相似文献
11.
污染物浓度变化趋势对于环境监测工作意义重大.现今各种前馈神经网络预测模型的输出结果仅与当前输入有关,无法研究污染物数据前后依赖关系.且多种污染物具有相同排放源,污染物间往往存在潜在关联关系,一种污染物的变化可能反映另一种污染物变化,所以在预测中需考虑其他敏感参数的影响.针对上述两个问题,提出一种基于敏感参数发现的区域重点污染物浓度预测方法.应用关联规则算法及多元回归分析挖掘出各污染物的敏感参数,构建多变量LSTM预测模型,将待预测污染物及其敏感参数作为预测模型特征变量,进行污染物的浓度预测.实验结果表明本文方法可有效预测污染物浓度变化趋势,预测效果优于未经关系发现的LSTM模型. 相似文献
12.
13.
古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。 相似文献
14.
15.
The current pandemic highlights the significance and impact of air pollution on individuals. When it comes to climate sustainability, air pollution is a major challenge. Because of the distinctive nature, unpredictability, and great changeability in the reality of toxins and particulates, detecting air quality is a puzzling task. Simultaneously, the ability to predict or classify and monitor air quality is becoming increasingly important, particularly in urban areas, due to the well documented negative impact of air pollution on resident’s health and the environment. To better comprehend the current condition of air quality, this research proposes predicting air pollution levels from real-time data. This study proposes the use of deep learning techniques to forecast air pollution levels. Layers, activation functions, and a number of epochs were used to create the suggested Long Short-Term Memory (LSTM) network based neural layer design. The use of proposed Deep Learning as a structure for high-accuracy air quality prediction is investigated in this research and obtained better accuracy of nearly 82% compared to earlier records. Determining the Air Quality Index (AQI) and danger levels would assist the government in finding appropriate ways to authorize approaches to reduce pollutants and keep inhabitants informed about the findings. 相似文献
16.
17.
18.
19.
基于神经网络的非线性时间序列故障预报 总被引:4,自引:0,他引:4
对模型未知非线性系统, 将系统输出组成时间序列并通过空间嵌入的方法转化为一个离散动态系统. 利用线性 AR 模型拟合时间序列的线性部分, 用神经网络拟合时间序列的非线性部分并补偿外界未知的扰动, 提出了通过对状态的观测实现时间序列一步预测的方法. 利用滚动优化的思想将一步预测推广, 提出了时间序列的 N 步预测方法, 证明了时间序列预测误差有界. 通过对预测误差进行概率密度估计和检验, 提出了故障的预报方法. 对 F-16 歼击机的结构故障预报结果表明了方法的有效性. 相似文献
20.
针对瓦斯浓度时间序列高度的混沌特性,采用微熵率法同步确定最优的嵌入维数与延迟时间,还原瓦斯涌出系统状态空间。以无线传感网络系统采集并经降噪处理后的瓦斯浓度序列作为样本。提出利用带有整定因子的扩展卡尔曼滤波器( EKF)对加权最小二乘支持向量回归机( WLS-SVR)的正则化参数γ与核参数σ进行快速寻优,并依据周期性更新的训练样本建立基于EKF-WLS-SVR耦合算法的动态预测模型以精确预测后续时间点的瓦斯浓度。通过MATLAB进行仿真,结果表明:EKF滤波器对提高WLS-SVR的拟合精度与学习效率方面有很大的帮助。相比于其他模型,该耦合模型具备更高的预测精度与更强的鲁棒特性,有较高的实用价值。 相似文献