首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ultrastructural changes in the cotyledon, radicle and suspensor haustorium ofPelargonium, containing either normal or mutant plastids, are investigated from the heart stage of embryogenesis to the mature seed. The fine structure of parenchymatous cells from the cotyledon and radicle is essentially similar whereas that of the suspensor haustorium is very different.The cotyledon and radicle develop into one massive storage tissue possessing numerous lipid and several protein bodies per cell, and well developed starch grains. The suspensor haustorium has no storage function, rather it acts as a transitory tissue which dies off as the seed matures. The extensive chloroplast development suggests that, in addition to its traditional role, the suspensor haustorium also acts as a photosynthetic booster for the developing embryo.The development of surviving mutant embryos is similar to normal ones except that in cotyledon and radicle cells plastids develop only to vesicles, which associate into loose prolamellar bodies and sometimes small fenestrated thylakoids, and in the suspensor haustorium cells, only to small compact grana.  相似文献   

2.
为探明种皮和胚乳是否是限制桃儿七种子萌发的主要因素,利用组织切片和显微技术,对桃儿七种子及其不同萌发期(1、7、14、21、28 d)解剖结构和播种后一定时期内(7~210 d)的植株生长形态进行观察。桃儿七种子由种皮、胚乳和胚构成。种皮包括外种皮和内种皮,外种皮致密规整,由外至内分别为栅状石细胞和表皮层细胞,内种皮由5~6层海绵细胞组成。胚乳占种子体积的绝大部分,包括珠孔胚乳和外胚乳。胚由胚根、胚轴和子叶组成,被致密种皮、多层珠孔胚乳和外胚乳包围。萌发期1~7 d胚根和胚轴开始伸长,7~14 d两片子叶分离,14~21 d胚根突破珠孔胚乳和种皮,21~28 d胚根、胚轴和子叶继续扩张伸长。种子播种210 d后可平均形成3片功能真叶和5条不定根。致密种皮(物理休眠)和多层胚乳(机械休眠)是限制桃儿七种子萌发的两个主要因素。  相似文献   

3.
黄精种子萌发过程发育解剖学研究   总被引:2,自引:0,他引:2  
采用石蜡切片技术对成熟黄精种子形态及萌发过程中的形态学变化及解剖结构特征进行了研究,以阐明黄精种子繁殖的生物学机制。结果显示:(1)成熟的黄精种子由外而内依次为种皮、胚乳和胚等3部分组成。其中种皮由一层木质化的细胞组成;胚乳占据种子的大部分结构,胚乳细胞含有大量淀粉,细胞壁增厚;胚处于棒型胚阶段。(2)黄精种子在萌发过程中棒型胚靠近种脐端分化为吸器、子叶联结和子叶鞘,靠近种孔的部位分化出胚根、胚轴和胚芽。(3)黄精种子萌发首先由子叶联结伸长将胚芽和胚根原基推出种孔,紧接着下胚轴膨大形成初生小根茎,吸器留在种子中分解吸收胚乳中的营养物质。(4)通过子叶联结连通吸器和初生小根茎,将胚乳中的营养物质由吸器-子叶联结这个通路转移到初生小根茎中,为初生根茎上胚芽和胚根的进一步分化提供物质保障。(5)黄精种子自然条件下萌发率较低,而且当年不出土。研究表明,黄精种子的繁殖生物学特性是其生态适应的一种重要机制。  相似文献   

4.
Four different parts, hypocotyl and radicle (HR), inner cotyledon (IC), outer cotyledon (OC), seed coat and endosperm (SE), were sampled from mature rapeseed (Brassica napus L.) by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC). On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed.  相似文献   

5.
The importance of seed reserves for growth of Pinus resinosaAit. during and shortly after seed germination was studied undercontrolled conditions. Tissues in the resting embryo were notcompletely differentiated. Many small, presumably reserve particleswere present in the embryo in addition to reserves in the megagametophyte.During seed germination, procambia in the embryo first differentiatedprotophloem 2 days after seeds were sown. The radicle beganto emerge from the seed coat at 5 days, at which time initialxylem formation was observed. Also, at approximately the sametime, primordia of primary needles were forming in the peripheralzone of the apex. Elements of the photosynthetic apparatus,including stomata and mesophyll with chloroplasts, were differentiatedfirst in the hypocotyl and then in cotyledons between 5 and8 days after seeds were sown. Photosynthetic rates of youngseedlings were correlated with rates of cotyledon expansion.During early developmental stages, reserve particles in megagametophytecells and embryo cells gradually disappeared. Surgical removalof megagametophytes at various stages of seed germination resultedin subsequent growth inhibition of the hypocotyl-radicle axis,with early removal of cotyledons suppressing most growth. Growthof primary needles appeared to be influenced indirectly by megagametophytereserves, probably by changes in amount of photosynthetic tissue.The embryo alone possessed capacity to differentiate such tissuesas primary needle primordia, stomata, and primary and secondaryvascular systems. Megagametophyte reserves appeared to contributeto growth of embryonic tissues only after the embryo itselfinitiated growth. Both current photosynthesis of seedlings andseed reserves contributed importantly to seedling development.  相似文献   

6.
芡个体发育早期的研究   总被引:8,自引:3,他引:5  
刘玫  王臣  刘鸣远 《植物研究》2001,21(1):97-99
本文研究了芡个体发育的早期, 即心形胚至种苗。心形胚至成熟胚表现为:苗端先发育, 根端弱育;胚芽叶节上的节生根原基先发育, 根端无明显分化。种子胚至种苗表现为:种子萌发时, 下胚轴末端产生多细胞分枝下胚轴毛;种苗形成中, 节生根先发育, 胚根后发育, 且长达1mm左右即停止生长。这些器官发育顺序上的特点在被子植物中是很特殊的, 应该是系统发生上的原始性状。下胚轴毛是水生或湿生被子植物比较普遍的性状, 是区分下胚轴与胚根的指示性状。  相似文献   

7.
长喙毛茛泽泻胚中营养物质的积累与消耗   总被引:2,自引:0,他引:2  
长喙毛茛泽泻是一种水生濒危植物。它的种子中没有胚乳,营养物质以淀粉和帽白体的形式贮藏在胚中。胚不同部位物质积累情况差异较大,下胚轴和子地细胞中的淀粉,蛋白体数目多,体积大,胚芽和胚根分生细胞中只贮藏有少量的淀粉粒和蛋白体。  相似文献   

8.
Arabidopsis thaliana is used as a model system to study triacylglycerol (TAG) accumulation and seed germination in oilseeds. Here, we consider the partitioning of these lipid reserves between embryo and endosperm tissues in the mature seed. The Arabidopsis endosperm accumulates significant quantities of storage lipid, and this is effectively catabolized upon germination. This lipid differs in composition from that in the embryo and has a specific function during germination. Removing the endosperm from the wild-type seeds resulted in a reduction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling skotomorphogenesis. Seedlings of two allelic gluconeogenically compromised phosphoenolpyruvate carboxykinase1 (pck1) mutants show a reduction in hypocotyl length in the dark compared with the wild type, but this is not further reduced by removing the endosperm. The short hypocotyl phenotypes were completely reversed by the provision of an exogenous supply of sucrose. The PCK1 gene is expressed in both embryo and endosperm, and the induction of PCK1:beta-glucuronidase at radicle emergence occurs in a robust, wave-like manner around the embryo suggestive of the action of a diffusing signal. Strikingly, the induction of PCK1 promoter reporter constructs and measurements of lipid breakdown demonstrate that whereas lipid mobilization in the embryo is inhibited by abscisic acid (ABA), no effect is seen in the endosperm. This insensitivity of endosperm tissues is not specific to lipid breakdown because hydrolysis of the seed coat cell walls also proceeded in the presence of concentrations of ABA that effectively inhibit radicle emergence. Both processes still required gibberellins, however. These results suggest a model whereby the breakdown of seed carbon reserves is regulated in a tissue-specific manner and shed new light on phytohormonal regulation of the germination process.  相似文献   

9.
10.
  • Conopodium majus is a geophyte with pseudomonocotyly, distributed in Atlantic Europe. It is an indicator of two declining European habitats: ancient woodland understories and oligotrophic hay meadows. Attempts to reintroduce it by seed have been hindered by scarce seedling emergence and limited knowledge of its seed biology.
  • Micro‐CT scanning was used to assess pseudomonocotyly. Embryo growth and germination were studied in the laboratory and the field, using dissection and image analysis. The effects of temperature, light, nitrate and GA3 on germination were tested. Seed desiccation tolerance was investigated by storage at different RHs and by drying seeds at different stages of embryo growth.
  • Seeds possess morphological but not physiological dormancy. Embryo growth and germination were promoted by temperatures between 0 and 5 °C, arrested above 10 °C, and indifferent to alternating temperatures, light, nitrate and GA3. Pseudomonocotyly appears to result from cotyledon fusion. While seeds tolerated drying to 15% RH and storage for 1 year at 20 °C, viability was lost when storage was at 60% RH. Seeds imbibed at 5 °C for 84 days had significant internal embryo growth but were still able to tolerate drying to 15% RH.
  • Reproduction by seed in C. majus follows a strategy shared by geophytes adapted to deciduous temperate forests. The evolution of fused cotyledons may enable the radicle and the hypocotyl to reach deeper into the soil where a tuber can develop. The embryo is capable of growth within the seed at low temperatures so that germination is timed for early spring.
  相似文献   

11.
Background and AimsInternal seed morphological traits such as embryo characteristics and nutritive tissue can vary considerably within a plant lineage. These traits play a prominent role in germination processes and the success of seedling establishment, and are therefore under high selective pressure, especially in environments hostile to seedlings, such as arid, saline or highly dynamic habitats. We investigated the relationships of seed internal morphology and germination characteristics of 84 species of Amaranthaceae s.l., a family with numerous lineages that have adapted to stressful growing conditions.MethodsWe used seed cross-sections to assess embryo type and the ratios of embryo to seed surface and radicle to cotyledon length. Furthermore, seed mass, mean time to germination, habitat preferences and further plant traits such as C3 or C4 photosynthesis and life form were compiled for each species. Data were analysed using phylogenetic comparative methods.Key resultsWe found embryo type (λ = 1), log seed mass (λ = 0.86) and the ratio of embryo to seed size (λ = 0.78) to be evolutionarily stable, with an annular embryo as ancestral in the family. Linked to shifts to the three derived embryos types (spiral, horseshoe-shaped and curved) is an increase in the ratio of root to cotyledon length and a reduction of nutritive tissue. We observed stabilizing selection towards seeds with relatively large embryos with longer radicles and less nutritive tissue that are able to germinate faster, especially in lineages with C4 photosynthesis and/or salt tolerance.ConclusionsWe conclude that the evolutionary shift of nutrient storage from perisperm to embryo provides an ecological advantage in extreme environments, because it enables faster germination and seedling establishment. Furthermore, the evolutionary shift towards a higher ratio of root to cotyledon length especially in small-seeded Amaranthaceae growing in saline habitats can provide an ecological advantage for fast seedling establishment.  相似文献   

12.
? The cell and developmental biology of zygotic embryogenesis in the model legume Medicago truncatula has received little attention. We studied M. truncatula embryogenesis from embryo sac until cotyledon maturation, including oil and protein body biogenesis. ? We characterized embryo development using light and electron microscopy, measurement of protein and lipid fatty acid accumulation and by profiling the expression of key seed storage genes. ? Embryo sac development in M. truncatula is of the Polygonum type. A distinctive multicellular hypophysis and suspensor develops before the globular stage and by the early cotyledon stage, the procambium connects the developing apical meristems. In the storage parenchyma of cotyledons, ovoid oil bodies surround protein bodies and the plasma membrane. Four major lipid fatty acids accumulate as cotyledons develop, paralleling the expression of OLEOSIN and the storage protein genes, VICILIN and LEGUMIN. ? Zygotic embryogenesis in M. truncatula features the development of a distinctive multicellular hypophysis and an endopolyploid suspensor with basal transfer cell. A clear procambial connection between the apical meristems is evident and there is a characteristic arrangement of oil bodies in the cotyledons and radicle. Our data help link embryogenesis to the genetic regulation of oil and protein body biogenesis in legume seed.  相似文献   

13.
Successful development of seeds under spaceflight conditionshas been an elusive goal of numerous long-duration experimentswith plants on orbital spacecraft. Because carbohydrate metabolismundergoes changes when plants are grown in microgravity, developingseed storage reserves might be detrimentally affected duringspaceflight. Seed development in Arabidopsis thaliana plantsthat flowered during 11 d in space on shuttle mission STS-68has been investigated in this study. Plants were grown to therosette stage (13 d) on a nutrient agar medium on the groundand loaded into the Plant Growth Unit flight hardware 18 h priorto lift-off. Plants were retrieved 3 h after landing and siliqueswere immediately removed from plants. Young seeds were fixedand processed for microscopic observation. Seeds in both theground control and flight plants are similar in their morphologyand size. The oldest seeds from these plants contain completelydeveloped embryos and seed coats. These embryos developed radicle,hypocotyl, meristematic apical tissue, and differentiated cotyledons.Protoderm, procambium, and primary ground tissue had differentiated.Reserves such as starch and protein were deposited in the embryosduring tissue differentiation. The aleurone layer contains alarge quantity of storage protein and starch grains. A seedcoat developed from integuments of the ovule with gradual changein cell composition and cell material deposition. Carbohydrateswere deposited in outer integument cells especially in the outsidecell walls. Starch grains decreased in number per cell in theintegument during seed coat development. All these characteristicsduring seed development represent normal features in the groundcontrol plants and show that the spaceflight environment doesnot prevent normal development of seeds in Arabidopsis. Arabidopsis ; spaceflight; embryo; endosperm; seed coat; storage reserves  相似文献   

14.
Based on the topographical analysis of photosynthesis and oil storage, we propose in a companion paper that photosynthetic oxygen release plays a key role in the local energy state, storage metabolism and flux toward lipid biosynthesis in developing soybean seeds. To test this hypothesis, we combined topographical analysis of ATP gradients across tissues, microsensor quantifications of internal O2 levels, assays of energy balance, metabolite profiles and isotope-labelling studies. Seeds show a marked degree of oxygen starvation in vivo (minimum O2 levels 0.1 kPa, approximately 1.3 microm), affecting ATP gradients, overall energy state, metabolite pools and storage activity. Despite the low light availability, photosynthesis supplies significant amounts of oxygen to the hypoxic seed tissue. This is followed by an increase in local ATP levels, most prominently within the lipid-synthesizing (inner) regions of the embryo. Concomitantly, partitioning of 14C-sucrose to lipids is increased, suggesting higher rates of lipid biosynthesis. It is concluded that both respiratory and biosynthetic fluxes are dynamically adjusted to photosynthetic oxygen supply.  相似文献   

15.
血皮槭种子休眠机制研究   总被引:2,自引:0,他引:2  
利用抑制物生物测定法和酸蚀技术研究了血皮槭种子休眠的原因。血皮槭种子吸水是一个非常缓慢的过程,在140 h以后种子含水量才能达到68%左右。酸蚀处理种子3 h,虽然没有加快种子的吸水速率,但能较好得使果皮变薄,也不影响种子的生活力。种子的各部位(果皮、种皮、子叶、胚根)均含有抑制物质,对小白菜种子的发芽率及胚根生长有很强的抑制作用,子叶各种处理水浸提液的抑制作用最强,果皮和种皮次之。血皮槭种子休眠主要由种壳机械障碍和种胚生理休眠两重因素导致,因此如何克服致密果壳而使激素能接触生理休眠的种胚是打破其种子休眠的关键技术。  相似文献   

16.
Butia capitata, an endemic palm of the Brazilian savanna threatened by deforestation, demonstrates low germinability due to seed dormancy. The present study characterizes the structure of the zygotic embryo and describes germination and seedling development. Pyrenes were sown into sandy soil substrates to germinate, and their embryos were also cultivated in vitro in MS medium; structural evaluations were made during their development. Seedling growth through the endocarp germ pore culminates in the protrusion of the cotyledonary petiole, with the root and leaf sheaths subsequently being emitted laterally from its extremity. The embryos are composed of the cotyledon (whose proximal third has a haustorial function) and a diminutive embryo axis that is contained within the cotyledonary petiole. The protoderm, ground meristem, and procambium can be observed in their typical positions in the embryo axis and cotyledon. The development of the vegetative axis could be observed on the second day of in vitro cultivation, with elongation of the embryo axis and the beginning of the differentiation of the first eophyll. Elongation of the cotyledonary petiole and the differentiation of the parenchyma and tracheary elements were observed during the second to fifth day. Although the hypocotyl–radicle axis is less differentiated than the plumule, root protrusion occurs on the eighth day, and the leaf sheaths are only emitted between the twelfth and the sixteenth days; the haustorium atrophied during this stage. The embryonic structure of B. capitata does not impose limitations on seed germination as dormancy is of the non-profound physiological type, and the 50 % elongation of the cotyledonary petiole serves as a morphological indicator of germination.  相似文献   

17.
冠果草种子萌发过程的组织化学动态   总被引:6,自引:1,他引:5  
冠果草的种子中没有胚乳,营养物质贮藏在胚中,其成分主要是淀粉和蛋白质。胚各部分的物质积累情况差异较大,子叶和下胚轴细胞中的淀粉粒、蛋白体数目多、体积大,胚芽和胚根分生细胞中则只贮藏少量的淀粉粒、蛋白体。在种子萌发过程中,胚各部分的淀粉粒逐渐解体,至二叶幼苗期全部消失。蛋白体的降解有严格顺序,远离胚芽的细胞中蛋白体降解较早,胚芽附近细胞中的降解较晚,而且胚芽细胞中还有新的蛋白体形成。单个蛋白体的降解  相似文献   

18.
Jane A. Rest  J. G. Vaughan 《Planta》1972,105(3):245-262
Summary The cotyledons of Sinapis alba L. seed are the storage organs and first photosynthetic organs. The development of the cotyledon cell contents was studied using electron and light microscopy. From the heart shaped embryo (11 days from petal fall) to the mature seed, nine stages were examined.Both types of protein grains (designated aleurone grains and myrosin grains) were found to form within vacuoles, but the mode of protein accumulation differed with each type of grain.Oil bodies were apparent with the EM from 18 days onwards, but could not be seen to arise from the ER. They were granular in appearance at early stages, but later became electron transparent.  相似文献   

19.
Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.  相似文献   

20.
Using scanning electron microscopy and semi-thin plastic sections, the pattern of development of the rice ( Oryza sativa L. ) embryo from 2 days after pollination (DAP) to maturity was followed. ( 1 ) At 2 DAP, the young embryo was observed to consist of an embryo proper, a hypoblast and a suspensor. The trum-pet-shaped hypoblast was a transitional region situated between the suspensor and the embryo proper. To label the hypoblast as suspensor is incorrect. During this time, dorsiventrality was established, but a radicle was not yet differentiated. Therefore it is still referred to as a proembryo. (2) 3 ~ 5 DAP, the embryo underwent definite morphological and anatomical changes. In the young embryo at 3 DAP the scutellum and colcoptile appeared simultaneously directly from the proembryo. The coleoptile did not originate from the scutellmn. During these foremost 3 days, the coleoptile primordium underwent a special kind of morphological change and formed a young coleeptile having the shape of an inverted hollow cone. This process revealed the true mechanism of c61eeptile formation. Anatomical observation indicated that the embryo at 3 DAP began to differentiate procambium, ground meristem and root cap. At 4 DAP a dome-like growth cone and protoderm of radicle appeared. Then the shoot-root axis became established. At 5 DAP the plumule, hypocotyl and radicle were formed. (3) It was shown that the embryo of rice actually has two cotyledons: the scutellum (a part of the embryonic envelope) and the coleeptile (The scutellum being the lateral cotyledon, a part of outside cotyledon, and the coleoptile the apical cotyledon--the coleoptile may be considered to be a modified form of a cotyledon). This kind of structural arrangemem can be referred to as dimorphic cotyledon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号