首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统绝对式位移传感器复杂编码和严苛光刻加工的难题,提出了一种"精机定位+精机测量"的差极结构绝对式时栅位移测量新方法.传感器定尺分为两列对极数相差1的激励绕组,每列激励绕组由空间正交排布的正/余弦绕组构成.通过施加正交激励电流,采用动尺正弦形感应绕组拾取时变磁场,得到两路行波信号.通过信号解耦以精机定位和精机测量的...  相似文献   

2.
针对半导体行业、航空航天等领域对于精密二维位移测量的迫切需求,提出了一种基于正交双行波磁场的平面二维时 栅位移传感器。 传感器由定尺和动尺组成,定尺由导磁基体和沿 x、y 方向排列的两励磁线圈组成,动尺由导磁基体和沿 x、y 方 向排列的两层感应线圈组成。 当励磁线圈通入正余弦励磁信号时,在定尺上方产生分别沿 x 和 y 方向运动的正交双行波磁场。 通过对感应线圈输出的感应电信号进行解算得到 x 和 y 方向的位移值。 首先介绍了传感器的结构和工作原理,对传感器模型 进行了电磁场仿真;然后对仿真误差进行溯源分析,并优化传感器结构;最后采用印刷电路板技术制作了传感器样机,并设计相 应的电气系统进行实验验证。 实验结果表明该传感器在 160 mm×160 mm 测量范围内能够实现平面二维位移测量,x 方向节距 内位移误差峰峰值为 32. 8 μm, y 方向节距内位移误差峰峰值为 34. 5 μm。  相似文献   

3.
针对目前光刻机、超精密数控机床等高端超精密装备对于精准平面定位的要求,提出了一种基于多频磁场耦合的平面 二维位移传感器。 传感器组成为定尺和动尺,其中定尺由导磁基体和 X、Y 方向励磁线圈构成,动尺由导磁基体和 X、Y 方向感 应线圈构成。 通过对 X、Y 方向励磁线圈通入正余弦励磁信号,在定尺上构建出多频磁场耦合的二维均匀磁场阵列,动尺感应 出带有位移信息的电信号,经过理论推导和电磁仿真验证了多频磁场直接解耦差动结构和幅值调制解算方法的可行性,并对仿 真误差进行分析,并优化了传感器结构。 最后采用 PCB 工艺制作传感器样机并开展相关实验研究,实验结果表明:传感器在 150 mm×150 mm 的测量范围可对二维位移进行精确测量,其中 X 方向测量精度为±33. 08 μm,Y 方向测量精度为±36. 95 μm,优 化后的传感器样机 X、Y 方向原始对极内位移误差峰峰值在原有基础上降低了 49. 1% 和 50. 7% 。  相似文献   

4.
根据时栅传感器的测量原理,提出一种采用高频时钟脉冲作为测量基准的变耦型时栅位移传感器以提高位移测量的精度。该传感器通过改变激励线圈和感应线圈的耦合状态输出感应位移变化的行波信号来实现精密位移测量。进行了建模和仿真,研究了不同测头姿态下传感器的位移误差特性,并对其进行了谐波分析,得到了不同测头姿态对位移测量误差各次谐波的影响规律。根据传感器模型制作了传感器并开展了验证实验。仿真和实验结果均表明:不同测头姿态对位移测量误差的影响主要体现在对测量误差的1次、2次和4次谐波上,且俯仰姿态引入的附加误差最大,其余测头姿态下引入的位移测量附加误差均较小。若保证较佳的测头姿态,传感器在定尺和动测头间气隙厚度为0.3mm时的原始误差约为±18μm。实验分析结果与仿真结果基本一致。  相似文献   

5.
为了进一步溯源时栅位移传感器磁场耦合过程引起的误差,对时栅位移传感器在构造场中的耦合特性进行研究,并研制了一种基于指数形平面线圈结构的新型直线时栅位移传感器。建立传感器工程构造磁场的数学模型,分析传感器耦合间隙对线圈耦合平面磁场分布的影响,研究不同形状平面线圈的耦合特性;根据传感器的耦合特性,构建了一种新型直线时栅位移传感器测量模型,对该模型进行了电磁场有限元仿真和仿真误差分析,得出该结构最佳感应间隙为0.4 mm;对传感器的结构误差进行了溯源分析,进一步优化传感器的结构;搭建实验平台,利用双层PCB绕线工艺加工传感器定尺和动尺,对优化前后的传感器样机开展对比实验。实验结果表明,设计的基于指数形平面线圈结构的新型直线时栅位移传感器可以有效抑制传感器的四次误差,新研制的传感器样机的原始测量精度在原有的基础上提高了45.8%。  相似文献   

6.
针对当前电场式和光电式直线位移传感器在环境适应性方面以及电磁式直线位移传感器在精度方面的不足,开展了互补谐振耦合型电磁式直线位移传感器的研究.传感器主要由1个定尺和2个动尺组成,其中2个动尺完全相同,且对称地布置于定尺两侧,与定尺形成互补耦合.定尺包含激励线圈和感应线圈,分别产生激励磁场和输出感应信号;动尺也包含感应线...  相似文献   

7.
针对现有磁场式直线时栅位移传感器行波磁场产生过程中,齿槽的存在影响行波磁场的匀速性,提出基于平面线圈线阵的直线时栅位移传感器。无齿槽的结构形式提高了行波磁场的匀速性,可实现大极距下的高精度测量。传感器将施加正交信号的两相励磁线圈相间排列形成平面线圈线阵,产生的行波磁场通过磁场拾取线圈感应出电行波信号,处理后得到位移量。通过电磁场分析软件对传感器进行建模仿真,根据仿真结果得到测量误差;通过理论分析对测量误差进行分析溯源,并根据分析结果对传感器结构进行优化。基于分析和优化结果研制出传感器样机,并进行了精度实验。实验表明,传感器在240 mm内测量精度为±1μm,实现了精密测量。  相似文献   

8.
针对现有时栅角位移传感器采用漆包线绕制工艺加工线圈,导致线圈布线不均且容易随时间发生变化进而影响测量精度的问题,提出一种基于PCB技术的新型时栅角位移传感器。该传感器通过在PCB基板的不同层上布置特定形状的激励线圈和感应线圈,形成两个完全相同并沿圆周空间正交的传感单元;当在两传感单元的激励线圈中分别通入时间正交的两相激励电流后,通过导磁定子基体和具有特定齿、槽结构的导磁转子对传感单元内的磁场实施精确约束,使两传感单元的感应线圈串联输出初相角随转子转角变化的正弦感应信号;最后通过高频时钟脉冲插补初相角实现精密角位移测量。利用有限元分析软件对传感器进行了建模和仿真。根据仿真模型制作了传感器实物,开展了验证实验,并对实验中角位移测量误差的频次和来源进行了详细分析。经过标定和补偿,最终获得了整周范围内误差在-2.82″~2.02″的时栅角位移传感器。理论推导、仿真分析和实验验证均表明,该传感器不仅能实现精密角位移测量,还能在激励线圈和感应线圈空间极距和信号质量不变的情况下,将位移测量的分辨力从信号源头提高1倍,且结构简单稳定、极易实现,特别适用于环境恶劣的工业现场。  相似文献   

9.
针对当前研制的双层时栅角位移传感器感应信号幅值小、时变磁场的均匀有效面积利用率低等问题,在原有“八”字形半正弦结构的基础上提出了一种双层互补式时栅角位移传感器设计方案。根据双层时栅位移传感器的特点,建立了其空间磁场分布模型,验证了双层时栅角位移传感器的互补式结构在构成行波上的优势;根据激励线圈的磁场分布规律进行建模,得到该参数状态下双层平面激励线圈的间距为0.235 mm。最后进行了有限元仿真分析和实验验证。仿真分析表明:采用互补式结构能有效增大感应信号强度,传感器的短周期误差峰峰值显著降低,能够有效抑制角度误差中的1次谐波和4次谐波。实验数据表明:传感器短周期原始误差为(-13.61″,13.30″),修正后误差为(-3.01″,0.78″);传感器长周期原始误差为(-19.60″,21.96″),修正后误差为(-2.62″,3.30″);相比单层“U”字形结构,1次误差减小了66.3%,4次误差减小了25.3%。  相似文献   

10.
针对高精度位移传感器难以加工的难题,提出一种基于离散绕组的磁场式时栅位移传感器。通过设计离散激励绕组排布方式与感应绕组的形状控制感应位移信号的变化规律,通过组合测量方式实现精密位移测量。通过理论建模、仿真分析与实验验证揭示了激励信号误差和安装偏差对传感器测量精度的影响规律。实验结果表明:两路激励信号的幅值不等和安装偏差都会在对极内测量精度中直接引入直流分量误差和2次谐波误差,其中2次谐波误差是误差的主要成分。安装偏差越大,2次谐波误差越大,动尺沿Z轴偏摆姿态对测量精度的影响最大,沿Y轴翻转姿态引入的误差次之,沿X轴俯仰姿态引入的误差最小。误差修正后传感器在144 mm的测量范围内,测量误差峰峰值为4.5μm,分辨力为0.15μm。通过毫米级尺寸的激励和感应绕组实现微米级精度测量,可显著降低传感器的制造难度,具有重要的工程应用价值。  相似文献   

11.
为了解决高精度的直线时栅位移传感器依赖空间超精密刻线和刻线不均匀等问题,提出一种采用多参数协同调制的新型直线时栅位移传感器。该传感器通过在PCB基板上布置阵列的激励线圈和特定形状的感应线圈,通过调制感应的面积和线圈的参数,感应出电行波信号,经过整形后用高频时钟脉冲插补得到位移量。通过仿真分析设计与样机实验,得出实验结果表明,在不改变空间极距的情况下,使得分辨力在信号源头上提高1倍且有±68μm的测量精度。  相似文献   

12.
交流励磁三维定位系统中磁传感器设计   总被引:2,自引:0,他引:2  
交流励磁定位系统可以对介入式微型医疗装置在人体内的三维位置实现非接触式遥测。在定位系统中,为了测量磁场分布范围宽、下限磁场微弱的交变磁场,本文设计开发了感应线圈式磁传感器。根据电磁感应原理,感应线圈先将交变的磁信号转换为电信号,再通过后级信号处理电路在强大的噪声背景中提取出有用的电信号,结合传感器的输入输出特性,即获得待测磁场大小。实验结果表明:磁传感器能准确测量微弱交变磁场,且具有宽测量范围、高分辨率、高稳定性和高精度的优点。磁传感器还能适用于一切非导磁环境中跨度大的交变磁场的测量,具有通用性。  相似文献   

13.
为了提高磁场式时栅位移传感器的测量精度,分析了该时栅的测量原理。针对其测量过程中出现的激励信号源误差、合成行波非线性误差等问题,提出了信号处理的新方法。通过比较两路感应驻波信号的电压幅值,产生一路相位与时间量及被测位移量相关的方波信号,根据此方波的相位解算出被测位移量。基于该方法建立了数学模型,并进行了仿真分析。通过实验验证了该方法的可行性与有效性,证明该方法对磁场式时栅位移传感器输出信号的处理具有广泛的适用性。  相似文献   

14.
电感式磨粒传感器在机械设备润滑油液磨粒在线监测中具有独特优势,通过测量传感器输出的感应电压信号来获取油液中磨粒的大小、数量以及质量等信息,进而可实现设备磨损程度的判断。为了研究电感式三线圈传感器中相邻两线圈之间的距离对传感器输出感应信号的影响,基于差动式三线圈互感原理建立传感器三维模型;利用JMAG-Designer12.0软件对传感器检测铁磁磨粒的过程进行瞬态电磁仿真,分析线圈间距对传感器输出感应电动势的影响;通过制作传感器进行实验并行验证仿真结果的正确性。研究结果表明,当线圈间距小于2.5 mm时,感应电动势随间距的增加而增大,当线圈间距大于2.5 mm时,感应电动势随间距的增加而减小,线圈间距为2.5 mm时,感应电动势最大,传感器输出信号与理论正弦信号变化趋势接近一致,并且信号干扰最小、信号最为稳定。  相似文献   

15.
为了实现空间较大范围内的移动目标定位跟踪,根据法拉第电磁感应定律,设计了一种电磁定位系统。此系统主要包括信号发射线圈和多轴接收线圈传感单元两部分。系统采用ST公司的ARM微控制器STM32F103来实现核心功能,并用特定的处理电路实现。功放电路对正弦信号进行放大,激励发射线圈产生交变磁场。三轴传感线圈感应磁场信号,得到三路模拟信号;采样处理后,通过计算得到相关位置参数。系统可以定位离信号源数米范围内的移动目标,满足室内的定位需求。  相似文献   

16.
为了解决时栅角位移传感器的动态测量问题,在基于静态的时栅位移传感器电磁仿真的基础上,通过引入运动单元模块,建立了时栅位移传感器的动态电磁仿真模型。通过分析时栅位移传感器的感应电动势幅值信号和感应频率信号,得到了动态条件下的时栅位移传感器感应电动势幅值和频率与转子转速的关系,并测算了磁场式时栅位移传感器在激励频率为400Hz的情况下,理论上能够达到的极限转速为8r/min。实验结果表明,转子转速在0~8r/min时传感器动态误差为±1.4″,速度超过8r/min时传感器精度开始恶化,转子转速为10r/min时传感器误差为±8.2″。  相似文献   

17.
电感式磨粒传感器中铁磁质磨粒特性仿真研究   总被引:3,自引:0,他引:3  
针对机械装置的在线监测传感器,模拟了铁磁质磨粒通过传感器过程中传感器线圈的磁场和感应线圈的感应电压瞬态变化特性.考虑了线圈与铁磨粒的材料、线圈匝数和激励线圈的输入电压等因素,应用Jmag Designer I0.4软件建立了传感器的二维有限元模型.仿真结果揭示了磨粒运动过程中线圈磁场与感应线圈中感应电压的变化规律,获得了感应电压与球形磨粒的直径大小的立方成正比,与磨粒运行速度成正比.研究结果对于电感式磨粒传感器的开发具有重要的指导价值.  相似文献   

18.
脉冲磁场传感器的理论计算与检测   总被引:3,自引:1,他引:3  
本文通过对脉冲感应型磁场传感器的感应电压进行精确的理论推导,得到检测量与传感器结构、激励磁场、被测磁场之间的定性关系,讨论两种测量方案:单线圈双向励磁和双线圈单向励磁,它们的误差来源、影响和消除措施,从而得出各自的适用范围。  相似文献   

19.
货车滚动轴承故障检测技术   总被引:3,自引:1,他引:2  
介绍了复合式磁电传感器的结构、原理和实验结果。该传感器在轴承待测部位形成分布磁场 ,当轴承外圈低速旋转时 ,传感器感应线圈上产生电信号 ,通过对该信号的分析和处理 ,可以对轴承故障进行探测。附图 9幅 ,参考文献 3篇。  相似文献   

20.
基于电磁感应定律和励磁线圈与非磁性导体环间的等效电路模型,对处在交变磁场中的非磁性导体环受到的感应悬浮力进行了研究。非磁性导体环以铝环作为研究对象,提出了铝环受到感应悬浮力的测量方案,并设计了感应悬浮力的测量装置。对不同励磁线圈电流大小、电流频率、铝环相对线圈端部位移等参数条件下铝环受到的感应悬浮力进行了试验研究,并且利用有限元软件ANSOFT对各参数下的感应悬浮力进行了仿真分析。仿真和试验结果表明:铝环受到的感应悬浮力与电流的平方近似成正比关系;当励磁线圈电流频率大于50Hz时,增加线圈电流的频率,感应悬浮力的变化不明显;随着铝环和励磁线圈相对位移的增加,铝环受到的感应悬浮力明显减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号