首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 250 毫秒
1.
侯金保  赵磊 《焊接学报》2021,42(4):74-78
利用Ti,Hf的反应活性配制的高温活性钎料,对SiCf/SiC复合材料与MX246A高温合金进行了高温钎焊,并实现两者高强度钎焊连接,分析了接头界面微观组织、物相组成与力学性能. 结果表明,(SiCf/SiC)/MX246A钎焊接头界面中有Ni2Si,NiTi,TiC,NiAl,Ni31Si12等产物生成,其结构可以表示为:(SiCf/SiC)/TiC + NiTi + Ni2Si + Ni31Si12 + (Ni, Cr) + (Cr, W) + (W, Mo)/MX246A. 在室温及1 000℃下,钎焊接头抗剪强度均达到70 MPa以上,接头断裂于复合材料侧. 在1 270 ℃保温15 min条件下,(SiCf/SiC)/MX246A钎焊接头1 000 ℃的平均抗剪强度可达到90 MPa.  相似文献   

2.
利用Cu-Pd-V钎料对新型四元陶瓷基复合材料Cf/SiBCN进行了真空钎焊连接.利用座滴法研究了Cu-Pd-V钎料对Cf/SiBCN复合材料的动态润湿性.利用SEM和XRD对钎焊接头微观组织及断口物相进行了分析表征.结果表明,经1 170℃保温30 min后钎料在复合材料上的润湿角为57°.在1 170℃-10 min钎焊规范下,Cu-Pd-V钎料在Cf/SiBCN复合材料表面形成厚度约为1 μm的V (C,N)反应层,主要包括VC和VN化合物,钎缝中央为Cu3Pd和CuPd两种固溶体相.接头的室温三点弯曲强度为58.1 MPa,当测试温度提高至600℃时接头强度上升至90.2 MPa,在700和800℃测试温度下钎焊接头强度呈下降趋势,但仍然可以维持在室温强度水平,分别为66.9和64.6 MPa.  相似文献   

3.
采用Ti-Zr-Be活性钎料作为连接层,在一定工艺参数下真空钎焊Cf/SiC复合材料和304不锈钢.利用SEM,EDS,XRD和俄歇谱仪分析接头微观组织结构,利用剪切试验检测接头力学性能,分析了工艺参数对接头抗剪强度的影响.结果表明,在复合材料附近形成ZrC+TiC+Be2C/Ti-Si反应层,连接层中主要包含FeZr2,锆基固溶体,BeTi,Ti-Zr固溶体等反应产物,304不锈钢附近形成FeTi/αFe反应层.在连接温度为950℃,连接时间为60min时,接头室温抗剪强度最高为109.3 MPa,断裂位置为Cf/SiC复合材料与中间层连接界面靠近复合材料端.  相似文献   

4.
采用Ag-Cu-Ti活性钎料对Cf/LAS复合材料进行了钎焊,研究了接头界面组织结构和力学性能.采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射(XRD)对钎焊接头组织结构进行分析,用抗剪试验检测接头力学性能.结果表明,接头界面典型结构为Cf/LAS复合材料/TiSi2/Cu2Ti4O/TiCu/Ag(s,s)+Cu(s,s)/TiCu/Cu2Ti4O/TiSi2/Cf/LAS复合材料.在钎焊温度为900℃,保温时间为10 min时,接头室温抗剪强度最高达8.4 MPa.  相似文献   

5.
采用TiZrNiCu钎料来实现改良的超高温陶瓷(Cf-SiCf)/SiBCN与金属Nb的钎焊连接,研究了温度、时间对界面组织及力学性能的影响规律,对连接机理进行了分析. 结果表明,在900 ℃/20 min的工艺参数下,(Cf-SiCf)/SiBCN-Nb接头室温抗剪强度最高达到36 MPa,接头典型的界面结构为Nb/Ti-Nb固溶体/(Ti, Zr)2(Cu, Ni)/Zr5Si3 + Ti5Si3/TiC + ZrC/(Cf-SiCf)/SiBCN. Cu元素在钎焊过程中逐渐从钎料扩散陶瓷母材中,通过与SiC反应生成Cu-Si脆性化合物进一步促进(Cf-SiCf)/SiBCN陶瓷的分解,同时Cu-Si相是接头断裂路径由钎料层扩展到陶瓷侧的主要原因;保温时间过高时,陶瓷的分解程度增加,接头断裂在陶瓷内部;而温度过高时,固溶体前端与钎料层物相差异增大而引起了贯穿钎料层的裂纹.  相似文献   

6.
TiNiNb钎焊Cf/SiC与TC4接头组织结构   总被引:1,自引:0,他引:1       下载免费PDF全文
文中在钎焊温度980℃、钎焊时间15 min的条件下,采用Ti54.8Ni34.4Nb10.8(原子分数,%)共晶合金粉末真空钎焊Cf/SiC复合材料与TC4钛合金.用SEM,EDS及差热分析法(DTA)观察测定了钎料组织、成分及熔点,分析了钎焊接头的微观组织结构.结果表明,Ti54.8Ni34.4Nb10.8共晶钎料由Ti2Ni及Ti(Nb,Ni)化合物组成,实际熔点为935℃.钎焊过程中,Ti和Nb元素与复合材料反应形成TiC和NbC混合反应层;钎料中的镍与TC4中的镍发生互扩散,在TC4钛合金侧形成扩散层;连接层由弥散分布的Ti(Nb,Ni)化合物和Ti2Ni相组成.Cf/SiC与连接层界面为接头最薄弱环节,此处易形成裂纹.  相似文献   

7.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

8.
采用BNi2钎料,对ZrB2-SiC陶瓷复合材料进行真空钎焊研究.借助SEM,EDS,XRD等分析测试手段分析了界面组织结构及性能.确定了最佳钎焊工艺参数:钎焊温度1160℃,保温时间20 min.结果表明,接头界面产物主要有δ-Ni2Si,β1-Ni3Si,ZrB2+C,Ni(s,s),CrxByCz.随着钎焊温度升高以及保温时间的延长,接头抗剪强度均先升高后降低.钎焊温度1160℃,保温时间20 min,钎焊接头室温抗剪强度达到最大121.3 MPa.钎焊温度和保温时间对接头断裂方式的影响有相似的规律,在保温时间较短时,裂纹主要产生于钎缝中的Ni(s,s)中,之后向Ni元素扩散层中扩展;当保温时间适中时,断裂主要发生在Ni元素扩散层中;当保温时间延长时,裂纹主要产生于含有一定β1-Ni3Si相的Ni(s,s)中,之后向Ni元素扩散层中扩展.  相似文献   

9.
采用BNi2+TiH2复合粉末钎料成功实现C/C复合材料与GH99镍基高温合金的钎焊,对焊后接头界面组织及力学性能进行了分析.结果表明,焊后接头典型界面结构为C/C复合材料/Cr3C2+MC+Ni(s,s)/MC+Ni(s,s)/Ni3Si+Ni(s,s)/Cr3C2+MC+Ni(s,s)/GH99高温合金.钎料中加入TiH2,可促进C/C复合材料母材的溶解,并在钎缝中部形成MC碳化物颗粒.随着TiH2含量的增加,钎缝中部MC形态由细小弥散向大片状转变.当TiH2含量为3%时,接头室温及800,1000℃高温抗剪强度最高,分别可达40,19及10 MPa,接头强度高于BNi2钎料钎焊接头强度,并可有效保证接头高温使用性能.  相似文献   

10.
采用AgCu+SiC复合钎料钎焊连接了Al2O3陶瓷与TC4钛合金,研究了SiC增强相含量与钎焊温度对接头组织与性能的影响,发现接头的典型组织为Al2O3陶瓷/Ti3Cu3O/Ag基固溶体+Cu基固溶体+TiC+Ti5Si3/TiCu2/TiCu/TC4钛合金. 陶瓷一侧的反应层随着钎焊温度的升高而变厚,随着增强相含量的增加而变薄,当增强相含量较少时,反应产物呈弥散分布,当增强含量较多时,反应产物发生了团聚现象. 钎焊的反应产物随着钎焊温度的升高由团聚分布变为弥散分布. 接头的抗剪强度随着增强相的含量与钎焊温度的升高先增加后降低,当增强相含量为3%(质量分数),钎焊温度为870℃时达到最大,为98 MPa.  相似文献   

11.
在900℃保温10 min的工艺条件下采用Ti含量不同的AgCu+Ti+nano-Si3N4复合钎料(AgCuC)实现了Si3N4陶瓷自身的钎焊连接,并对不同Ti元素含量的接头界面组织及性能进行了分析.结果表明,接头典型界面结构为Si3N4/TiN+Ti5Si3/Ag(s,s)+Cu(s,s)+TiNP+Ti5Si3P/TiN+Ti5Si3/Si3N4.随着复合钎料中Ti元素含量的增加,钎缝中团聚的纳米Si3N4颗粒逐渐减少,母材侧的反应层厚度逐渐增加后趋于稳定.当Ti元素含量高于4%时,钎缝中形成了类似于颗粒增强金属基复合材料的界面组织;当Ti元素含量达到10%时,有少量Ti-Cu金属间化合物在钎缝中形成;钎焊接头的抗剪强度随着Ti元素含量的增加而呈现先增加后降低的变化趋势,当Ti元素含量为6%时接头的抗剪强度达到最高值,即75 MPa.  相似文献   

12.
通过对比试验优选出了合适钎料,并进行了后续钎焊试验.在钎焊温度800~900℃,保温时间为10 min的条件下,采用Ag-Cu-Ti钎料实现了DD3镍基高温合金与Ti3AlC2陶瓷的真空钎焊连接.利用扫描电镜、能谱仪、XRD等对接头的界面结构进行了分析.结果表明,接头的典型界面结构为DD3/AlNi/Al3(Ni,Cu)5+Al(Ni,Cu)+Agss/(Al,Ti)3(Ni,Cu)5/Al4Cu9+AlNi2Ti+Agss/TiAg/Ti3AlC2.接头的力学性能测试表明,在钎焊温度为850℃,保温时间为10 min的条件下,接头的最高抗剪强度可达135.9 MPa,断裂发生在靠近钎缝的Ti3AlC2陶瓷侧.降低和提高钎焊温度对接头界面组织影响不大,但接头强度有一定程度下降.  相似文献   

13.
采用Cu-25Sn-10Ti钎料钎焊SiO2f/SiO2复合材料与Invar合金,研究了界面组织结构及其形成机理,分析了不同钎焊保温时间下界面组织对接头性能的影响.结果表明,在钎焊温度880℃,保温时间15 min的工艺参数下,接头在SiO2f/SiO2复合材料侧与Invar合金侧均形成了连续的界面反应层,界面整体结构为Invar合金/Fe2Ti+Cu(s,s)+(Ni,Fe,Cu)2TiSn/Cu(s,s)+Cu41Sn11+CuTi/TiSi+Ti2O3/SiO2f/SiO2复合材料.在钎焊温度一定时,随着保温时间的延长,复合材料侧TiSi+Ti2O3反应层厚度逐步增加,Fe2Ti颗粒逐步呈大块状连续依附其上,接头强度先增大后减小.当钎焊温度880℃,保温时间15 min时,接头室温抗剪强度达到11.86 MPa.  相似文献   

14.
设计了Ag-(15~26)Cu-(13~20)In-(3.1~6.9)Ti活性钎料,分别在780℃/20 min,780℃/40 min和800℃/10 min三种参数下实现了SiO2f/SiO2复合材料与铌的连接,分析了接头微观组织,测试了接头室温抗剪强度.其中800℃/10 min钎焊参数下的接头平均抗剪强度最高,达到21.6 MPa;微观分析结果表明,接头中靠近SiO2f/SiO2母材界面处形成了厚度约为2μm的连续扩散反应层,靠近铌的界面钎料与母材也形成了良好的结合.该钎焊参数下接头界面物相依次为:SiO2f/SiO2→TiO+TiSi2→TiO+Cu3Ti→Ag(s, s)+Ag3In+Cu(s, s)→Nb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号