首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The simultaneous removal of formaldehyde and ammonium in aerobic cultures and the inhibitory effect of formaldehyde on ammonium oxidation were investigated. The influence of a co‐substrate, methanol, on formaldehyde biodegradation and on the nitrification process was also evaluated. Formaldehyde was completely removed at all concentrations tested (30–3890 mg dm?3) in assays with that compound as the single carbon source and in the presence of methanol as co‐substrate. An initial formaldehyde biodegradation rate of 4.6 g CH2O g?1 VSS d?1 was obtained for 2000 mg CH2O dm?3 as single carbon source compared with a rate of 7.3 g CH2O g?1 VSS d?1 when methanol was added. Formaldehyde was inhibitory to the nitrification process at initial concentrations higher than 350 mg dm?3. Increasing the initial formaldehyde concentration or adding a co‐substrate such as methanol resulted in a longer lag phase before ammonium oxidation and caused a decrease in the degree of nitrification. Nitrification was completely inhibited at initial formaldehyde concentrations higher than 1500 mg dm?3. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
The anaerobic digestion of alkaline black liquor from a cereal straw pulping mill was studied in batch (serum bottles) and continuous systems (up-flow anaerobic sludge blanket reactor—UASB). The batch digestion studies confirmed that lignin and related compounds (LRC) in the alkaline black liquor were the main inhibitory substances and could not be decomposed by anaerobic bacteria. At organic loading rates of 5–10 kg COD m?3 day?1, the UASB reactor achieved 50–60% COD removal efficiencies. Gas production was 2–3 dm3 per dm3 of alkaline black liquor. Two different sludge types were examined in the reactor: granular and cluster-like sludges. Sludge in a cluster, which involved many small granules and flocs, tended to form larger aggregates and possessed good settling ability.  相似文献   

3.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

4.
The biomass holdup and characteristics of the anareobic fluidised bed system for methane recovery from liquid wastes was examined at COD loadings of between 5.8 to 108 kg m?3 day,?1 hydraulic retention times of between 0.45 to 8h, and feed COD concentrations of between 480 to 9000 mg dm?3. Under these operating conditions, the equilibrium biomass holdups increased with increasing COD loadings and varied from 15000 to 32000 mg VSS dm?3 The distribution of biomass holdup and biofilm thickness in the reactor was relatively uniform, because of the completely mixed conditions maintained and the continuous sloughing of biofilms induced by the effervescence caused by rising methane bubbles. This continuous biofilm sloughing process also eliminated the need for intentional sludge wasting and consequently, the resulting sludge retention time in the reactor decreased with increasing COD loadings. The ability of the anaerobic fluidized bed system to retain a high biomass holdup was clearly demonstrated. As a result this system is ideal for being employed as a high-rate system for methane recovery from liquid wastes, even at low feed COD concentrations.  相似文献   

5.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

6.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
This study was conducted to investigate the feasibility of a two‐phase anaerobic treatment system for fat‐containing wastewater. The two‐phase system was composed of a continuously stirred tank reactor for acidogenesis and an upflow anaerobic sludge blanket (UASB) reactor for methanogenesis. Its performance was compared with a conventional single‐phase system of a UASB reactor treating synthetic wastewater containing major long‐chain fatty acids (LCFAs). LCFAs did not cause any significant problem up to the LCFA mixture loading rate of 1.21 kg LCFA‐COD m?3 day?1 (3500 mg LCFA‐COD dm?3) in both systems. However, the efficiency of the single‐phase system deteriorated at loading rates above 1.38 kg LCFA‐COD m?3 day?1 (4000 mg LCFA‐COD dm?3), while that of the two‐phase system was still satisfactory. More than 19.2% of LCFAs were degraded and 11.5% of unsaturated LCFAs were saturated in the acidogenesis of the two‐phase system, which led to the enhanced specific methane production rate and the reduced scum layer of the subsequent UASB reactor. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
A fibrous‐bed bioreactor with immobilized cells of Pseudomonas putida and Pseudomonas fluorescens was used to treat groundwater contaminated with benzene, toluene, ethylbenzene, and xylenes (collectively know as BTEX). The kinetics of BTEX biodegradation in the fibrous‐bed bioreactor operated under continuous well‐mixed conditions was studied at room temperature. Aeration was not used in the process fed with groundwater samples with an average total BTEX concentration of 2.75 mg dm?3. All BTEX compounds present in the groundwater feed were concurrently and completely biodegraded even under oxygen‐limited or hypoxic conditions. Nearly 100% removal efficiency was obtained when the retention time was greater than 1 h. BTEX removal efficiency decreased with decreasing the retention time, with p‐ and o‐xylenes showed up first in the treated groundwater, followed by benzene and then other BTEX compounds. Biodegradation rates of BTEX generally increased with increasing BTEX concentration and loading rate. The maximum BTEX biodegradation rate was 5.76 mg h?1 dm?3 at the loading rate of 6.54 mg dm?3 h?1. The bioreactor had a stable performance, maintaining its ability for efficient BTEX degradation without requiring additional nutrients for more than 1 month. The good performance of the fibrous‐bed bioreactor was attributed to the high cell density (~15 g dm?3 reactor volume) in the fibrous matrix. © 2002 Society of Chemical Industry  相似文献   

9.
Simultaneous organic carbon and nitrogen removal was studied in a sequencing batch reactor (SBR) fed with synthetic municipal wastewater and controlled at a low dissolved oxygen (DO) level (0.8 mg dm?3). Experimental results over a long time (120 days) showed that the reactor achieved high treatment capacities (organic and nitrogen loading rates reached as high as 2.4 kg COD m?3 d?1 and 0.24 kg NH3‐N m3 d?1) and efficiencies (COD, NH3‐N and total nitrogen removal efficiencies were 95%, 99% and 75%). No filamentous bacteria were found in the sludge even though the reactor had been seeded with filamentous bulking sludge. Instead, granular sludge, which possessed high activity and good settleability, was formed. Furthermore, the sludge production rate under low DO was less than that under high DO. Significant benefits, such as low investment and less operating cost, will be obtained from the new process. © 2001 Society of Chemical Industry  相似文献   

10.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
In the refinery industry, the washing processes of middle‐distillates using caustic solutions generate phenol‐ and sulfide‐containing waste streams. The spent caustic liquors generated contain phenols at concentrations higher than 60 g dm?3(638.3 mmol dm?3). For sulfur compounds, the average sulfide concentration was 48 g dm?3(1500 mmol dm?3) in these streams. The goal of this study was to evaluate the specific impact of phenol and sulfide concentrations towards the phenol‐biodegradation activity of a phenol‐acclimated anaerobic granular sludge. An inhibition model was used to calculate the phenol and sulfide inhibitory concentrations that completely stopped the phenol‐biodegradation activity (IC100). A maximum phenol‐biodegradation activity of 83 µmol g?1 VSS h?1 was assessed and the IC100 values were 21.8 mmol dm?3 and 13.4 mmol dm?3 for phenol and sulfide respectively. The limitation of the phenol biodegradation flow by phenol inhibition seemed to be related to the more important sensitivity of phenol‐degrading bacteria. The up‐flow anaerobic sludge bed reactor operating in a non‐phenol‐dependent inhibition condition did not present any sensitivity to sulfide concentrations below 9.6 mmol dm?3. At this residual concentration, the pH and bisulfide ions' concentration might be responsible for the general collapsing of the reactor activity. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
In this work, the biodegradability of wastewater from a slaughterhouse located in Ke?an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230 mg dm?3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000 mg dm?3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry  相似文献   

14.
COD removal efficiencies in the range 75 to 98% were achieved in an anaerobic fluidised bed system designed for the recovery of methane from liquid wastes, when evaluated at COD loadings of between 5.8 to 108 kg m?3 day?1, hydraulic retention times of between 4.45 to 8 h, and feed COD concentrations of beween 480 to 9 000 mg dm?3. More than 90% of feed COD could be removed up to COD loadings of about 40 kg m?3 day?1. Up to around 300 dm2 of methane were produced per kg COD removed and this methane production rate was independent of the COD loadings applied in this investigation. Volatile acid concentration in the reactor increased sharply at a COD loading of about 40 kg m?3 day?1 and therefore, sufficient alkalinity should be provided to prevent pH from dropping to the undesirable level. The anaerobic fluidised bed system can be operated at a significantly higher liquid throughputs while maintaining its excellent efficiency.  相似文献   

15.
In this study, the effect of various factors such as C:N ratio, carbon source, percentage P content in the sludge influencing the simultaneous denitrification and enhanced biological phosphorus removal was investigated in batch tests on bean and tomato waste sludge from an upflow anaerobic sludge blanket reactor–anoxic/aerobic system and municipal sludge from a circulating fluidized bed bioreactor. A correlation between the change in redox potential and rate of P release was developed. Interestingly, maximum P release was observed at positive redox potential in some of the batch tests. Simultaneous denitrification and P release under anoxic conditions was observed during all the batch tests. Sludge acclimatization improved the efficiency of the sludge and proved independency of maximum specific denitrification rate and P content of sludges. The contribution of denitrifying PAOs to anoxic P uptake was determined through the denitrification control test at an initial level of PO4‐P of 100–120 mg dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
The evolution of biomass contained in a pilot-scale digester treating wastewater from a sea-food processing factory (15–45 g Chemical Oxygen Demand (COD) dm?3 and high salinity) was studied for 2 years. During this period, different effluents have been treated and several operational conditions were followed. Laboratory-scale experiments were carried out to determine the sludge methanogenic activity and the salinity adaptation of the biomass which developed in the digester. During the different periods, sludge concentration remained between 10 and 12 g Volatile Suspended Solids (VSS) dm?3, a value that seems to be characteristic for this reactor. A global Organic Loading Rate (OLR) balance showed no significant change of biomass concentration inside the reactor, although a quite important growth of biomass (11·5% of OLR fed) was observed. Methanogenic activity assays indicated a sludge with a good activity (0·5–0·75 g COD g?1 VSS day?1) in a saline medium could be obtained from a low activity sludge (0·047 g COD g?1 VSS day?1). Toxicity assays showed the importance of antagonistic effects of other cations on the toxicity exerted by sodium.  相似文献   

17.
Electrochemical oxidation of organic pollutants present in the dye-bath and wash water effluents from the textile industry was carried out in batch, batch recirculation and recycle reactor configurations under different conditions of current density, treatment duration, effluent flow rate and electrode specific surface. COD reduction of 52.63% to 82.61% could be obtained when the Procion blue dye-bath effluent was treated in the batch reactor for 8 h. In batch recirculation reactor, the reduction was 94.3% for dye-bath effluent and 91.4 for wash water effluent after 6 h of operation at a current density of 5.0 A dm?2 and flow rate of 100 L h?1. The specific energy consumption was found to be 4.32 kWh (kg COD)?1 for dye-bath effluent and 83.8 kWh (kg COD)?1 for wash water effluent. The results for wash water effluent under continuous operation of recycle reactor conditions showed 52.86% of COD removal at recycle flow rate of 100 L h?1 with discharge flow rate of 3 L h?1. The specific energy consumption was found to be 11.9 kWh (kg COD)?1.  相似文献   

18.
The ozonation of wastewater supplied from a treatment plant (Samples A and B) and dye‐bath effluent (Sample C) from a dyeing and finishing mill and acid dye solutions in a semi‐batch reactor has been examined to explore the impact of ozone dose, pH, and initial dye concentration. Results revealed that the apparent rate constants were raised with increases in applied ozone dose and pH, and decreases in initial dye concentration. While the color removal efficiencies of both wastewater Samples A and C for 15 min ozonation at high ozone dosage were 95 and 97%, respectively, these were 81 and 87%, respectively at low ozone dosage. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal efficiencies at several ozone dose applications for a 15 min ozonation time were in the ranges of 15–46% and 10–20%, respectively for Sample A and 15–33% and 9–19% respectively for Sample C. Ozone consumption per unit color, COD and DOC removal at any time was found to be almost the same while the applied ozone dose was different. Ozonation could improve the BOD5 (biological oxygen demand) COD ratio of Sample A by 1.6 times with 300 mg dm?3 ozone consumption. Ozonation of acid dyes was a pseudo‐first order reaction with respect to dye. Increases in dye concentration increased specific ozone consumption. Specific ozone consumption for Acid Red 183 (AR‐183) dye solution with a concentration of 50 mg dm?3 rose from 0.32 to 0.72 mg‐O3 per mg dye decomposed as the dye concentration was increased to 500 mg dm?3. © 2002 Society of Chemical Industry  相似文献   

19.
The recirculation of nitrified leachate through landfill sites, followed by in situ denitrification, represents a novel and more sustainable approach for the removal of ammonia from leachate, prior to discharge. The effects of nitrate and leachate supplementation on methanogenesis in Municipal Solid Waste (MSW) were studied in batch cultures. The addition of a range of nitrate concentrations to MSW samples had an inhibitory effect on methanogenesis. The effects were dose‐dependent, such that recovery of methane production was recorded within 5 and 23 days with added 100 and 750 mg NO3 dm?3, respectively. Even after 24 days, no recovery was observed in cultures challenged with 1000 mg NO3 dm?3. The enumeration of denitrifying bacteria in a range of fresh, actively methanogenic and aged, well‐decomposed MSW confirmed the potential of MSW for rapid denitrification. Methanogenesis was not inhibited by the addition of leachate (20–100% strength) that contained high concentrations of VFAs. However, when the same leachate was supplemented with nitrate (250 mg NO3 dm?3), methanogenesis was inhibited by the addition of leachate concentrations ≥20%, which was attributed to inhibition of denitrification by VFAs. Propionate accumulated, confirming the importance of methanogenesis as an electron sink. With the removal of nitrate and the recovery of methanogenesis, net propionate concentrations decreased. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
曹相生  付昆明  钱栋  朱兆亮  孟雪征 《化工学报》2010,61(11):2939-2943
如何获得稳定的NO2--N作为厌氧氨氧化细菌的电子受体是城镇污水通过厌氧氨氧化途径脱氮的瓶颈问题。为此考虑利用反硝化途径获取稳定的NO2--N。以甲醇为碳源,采用小试装置的SBR反应器,通过控制进水C/N(COD与NO3--N质量浓度比)的策略,研究了反硝化过程中的NO2--N积累的状况。试验结果表明以甲醇为碳源且投加量不足时(C/N3.2),反硝化过程中和反硝化结束后会产生稳定的NO2--N积累;在C/N不足的前提下,NO2--N积累量随甲醇投加量的增加而增加;进水C/N为2.4~3.2时,可获得约25%的NO2--N积累率;进水C/N为0.8时,NO2--N积累率仅为5.6%;C/N1时,NO2--N与NO3--N的还原速率随着COD浓度的增加而增加;C/N≥1时,COD浓度不再影响NO2--N与NO3--N的还原速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号