首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 61 毫秒
1.
Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金   总被引:1,自引:1,他引:0       下载免费PDF全文
使用Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金,利用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)等设备分析了钎焊接头界面组织,阐明了反应机理,并研究了钎焊温度对接头界面组织和力学性能的影响. 结果表明,钎焊接头的界面结构为ZTA陶瓷/TiO+Ti3(Cu,Al)3O/Ag(s,s)/Ti2Cu3/TiCu/Ti2Cu/α+β-Ti/TC4合金. 随着钎焊温度的升高,钎缝中Ag基固溶体层变薄,Ti-Cu金属间化合物层变厚,当钎焊温度达到890 ℃时,Ti-Cu金属间化合物几乎占据整了个钎缝区域. 随着温度的升高,接头抗剪强度先增大后减小,在钎焊温度为890 ℃时,接头的室温抗剪强度达到最大值,其值为43.2 MPa.  相似文献   

2.
采用Ag-Cu-Ti活性钎料对Cf/LAS复合材料进行了钎焊,研究了接头界面组织结构和力学性能.采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射(XRD)对钎焊接头组织结构进行分析,用抗剪试验检测接头力学性能.结果表明,接头界面典型结构为Cf/LAS复合材料/TiSi2/Cu2Ti4O/TiCu/Ag(s,s)+Cu(s,s)/TiCu/Cu2Ti4O/TiSi2/Cf/LAS复合材料.在钎焊温度为900℃,保温时间为10 min时,接头室温抗剪强度最高达8.4 MPa.  相似文献   

3.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

4.
为研究钎焊温度对Ti60/Si3N4接头组织与力学性能的影响,采用Ag-28Cu共晶钎料在870~910℃温度区间,保温10 min条件下进行钎焊连接.利用扫描电子显微镜、能谱仪对钎焊接头界面组织进行分析,得到的典型接头界面组织结构为Ti60/Ti-Cu化合物/Ag(s,s)+Cu(s,s)/Ti-Cu化合物/Ti5Si3+TiN/Si3N4,并对钎焊接头的组织演变过程进行了分析.结果表明,随着钎焊温度的升高,Ti60侧的Ti-Cu化合物反应层与Si3N4陶瓷侧的Ti5Si3+TiN反应层厚度逐渐增加,Ag(s,s)与Cu(s,s)含量减少,同时,扩散至Si3N4陶瓷侧的Ti元素与液相中Cu元素反应生成Ti-Cu化合物并在Ti5Si3+TiN反应层中形核.剪切测试表明,在钎焊温度880℃,保温10 min工艺参数条件下获得的接头最大抗剪强度为61.7 MPa.  相似文献   

5.
采用Ti-37.5Zr-15Cu-10Ni和 Ag-Cu28两种钎料分别对TC4钛合金/30CrMnSiNi2超高强钢异种材料进行了钎焊,对钎焊界面组织以及接头的力学性能进行了分析。结果表明:Ag基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ag(s,s)+Ti-Cu系化合物组成;因Ag固溶体的存在,钎缝具有一定的韧性,接头剪切强度较高,剪切断口呈现出韧性断裂特征。Ti基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ti-Zr固溶体+未完全反应凝固钎料,钎缝显微硬度较高,接头剪切强度较低,呈现出脆性断裂特征。Ag基钎料TC4/30CrMnSiNi2A异种材料钎焊接头力学性能明显优于Ti基钎料结果,在钎焊温度830℃,保温时间15min时,剪切强度为125.52MPa。  相似文献   

6.
试验采用加入了碳纳米管(carbon nanotubes,CNTs)的AgCu4.5Ti + xCNTs (x为质量分数,%)复合钎料(简称AgCuTiC复合钎料),实现了TC4钛合金与C/C复合材料的真空钎焊连接. 通过SEM,EDS等分析手段确定了在CNTs含量为0.2%、钎焊温度为880 ℃、保温时间为20 min时接头的典型界面组织为TC4/扩散层/Ti2Cu/TiCu/Ti3Cu4/TiCu4/TiC + TiCu2 + Ag(s.s) + Cu(s.s)/Ti3Cu4/TiCu4/TiC/C/C复合材料;研究了CNTs含量对接头组织与性能的影响. 结果表明,随着CNTs含量的增加,钎缝宽度变化呈下降趋势,界面组织细化,界面中的Ti3Cu4与TiCu4脆性化合物的含量降低、TiC与TiCu2化合物的含量增加;接头的抗剪强度呈先上升后下降的趋势变化;当CNTs含量为0.4%时抗剪强度最高,达到44 MPa;CNTs的加入可使界面组织得到细化,有利于缓解钎缝中心区域与两侧母材之间存在的由于热膨胀系数不匹配而形成的较大残余应力,有效地提高了接头的抗剪强度.  相似文献   

7.
在钎焊时间3~30min,钎焊温度860-1000℃的条件下,采用AgCuTi钎料对C/C复合材料和TC4合金进行了钎焊试验。利用扫描电镜及EDS能谱分析的方法对接头的界面组织及断口形貌进行了研究。结果表明,接头界面结构为C/C复合材料/TiC+C/TiCu+TiC/Ag(s.s)+Ti3Cu4+TiCu/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu+Ti(s.s)/TC4。由压剪试验测得的接头抗剪强度结果可知,在钎焊温度910℃,保温时间10min的条件下,接头获得的最高抗剪强度为25MPa。接头的断口分析结果表明,接头断裂的位置与被连接界面的碳纤维方向有关,当碳纤维轴平行于连接面时,断裂发生在复合材料中;当碳纤维轴垂直于连接面时,断裂主要发生在复合材料与钎料的界面处。  相似文献   

8.
采用AgCu-4.5Ti钎料直接钎焊TC4钛合金与SiO2复合材料,研究了接头界面组织结构及形成机理,分析了不同工艺参数下界面变化对接头抗剪强度的影响。研究表明:接头界面典型结构为SiO2复合材料/TiSi2/Cu4Ti3+Cu3Ti3O/ Ag(s,s)+Cu(s,s)/TiCu/Ti2Cu/α,β-Ti/TC4;钎焊温度的升高可促进两侧母材界面反应层厚度的增加,同时钎缝中部的AgCu共晶组织消失,化合物相增多;随着接头界面结构的变化,接头抗剪强度表现出先升高后降低的趋势:当钎焊温度为850 ℃,保温10 min时,接头室温最高抗剪强度达到7.8 MPa  相似文献   

9.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

10.
在900℃保温10 min的工艺条件下采用Ti含量不同的AgCu+Ti+nano-Si3N4复合钎料(AgCuC)实现了Si3N4陶瓷自身的钎焊连接,并对不同Ti元素含量的接头界面组织及性能进行了分析.结果表明,接头典型界面结构为Si3N4/TiN+Ti5Si3/Ag(s,s)+Cu(s,s)+TiNP+Ti5Si3P/TiN+Ti5Si3/Si3N4.随着复合钎料中Ti元素含量的增加,钎缝中团聚的纳米Si3N4颗粒逐渐减少,母材侧的反应层厚度逐渐增加后趋于稳定.当Ti元素含量高于4%时,钎缝中形成了类似于颗粒增强金属基复合材料的界面组织;当Ti元素含量达到10%时,有少量Ti-Cu金属间化合物在钎缝中形成;钎焊接头的抗剪强度随着Ti元素含量的增加而呈现先增加后降低的变化趋势,当Ti元素含量为6%时接头的抗剪强度达到最高值,即75 MPa.  相似文献   

11.
ZrO2 ceramic/stainless steel joints were fabricated by pressureless brazing with Ag–Cu filler metals and TiH2 powders. The microstructures and elemental distributions of the joint cross-section as well as the reaction products at the ceramic/filler interface were analyzed using SEM, EDS, XRD and XPS. The results showed that there existed three zones with a distinguished difference in microstructure crossing the brazing interlayer. A double-layer structure including a reaction layer and a sublayer was formed at the ZrO2/filler interface, where Ti4+, Ti2+ and Zr2+ were located based on the XPS spectra. It is further found that Ti originated from TiH2 coating diffused into the whole interlayer. The high activity of neonatal Ti caused the reactions of Ti/ZrO2 and Ti/Cu, resulting in the interfacial phases such as Ti3Cu3O, CuTi3 and Zr.  相似文献   

12.
Abstract

ZrB2–SiC ceramic composite was brazed by using TiZrNiCu active filler metal. The microstructure and interfacial phenomena of the joints were analysed by means of SEM, energy dispersive X-ray spectroscopy and X-ray diffraction. The joining effect was evaluated by shear strength. The results showed that the reaction products of the ZrB2–SiC ceramic composite joint were TiC, ZrC, Ti5Si3, Zr2Si, Zr(s,s) and (Ti, Zr)2 (Ni, Cu), and the microstructure was separately ZrB2–SiC/Zr(s,s)/Ti5Si3+Zr2Si+TiC+ZrC+(Ti,Zr)2(Ni,Cu)/Zr(s,s)/ZrB2–SiC. A conceptual interface evolution model was established to explain the interface evolution mechanism. The maximum shear strength of the brazed joints was 143·5 MPa at the brazing temperature T of 920°C and the holding time t of 10 min.  相似文献   

13.
The residual stress is considered to be the driving force for the failure of ceramic/metal brazing joint. In this paper, the residual stress in a SiC/Nb joint is alleviated by using AgCuTi+B4C composite brazing filler. SEM, EDS and XRD are applied to characterised the microstructure of the joint, which is determined to be SiC/Ti3SiC2/Ag(s,s)+Cu(s,s)+TiB+TiC/TiCu+ Nb(s,s)/Nb. The effects of the B4C strengthening phase mass fraction and the brazing temperature on the microstructure and the mechanical properties of the joint are investigated. It is found that the reaction products between B4C and the brazing filler (TiB whisker and TiC particles) uniformly distribute inside the joint if the mass fraction of the B4C is not higher than 1.5 wt% and when the amount of B4C reaches 2 wt%, the reaction products begin to agglomerate. With the rising of the brazing temperature, the thickness of the Ti3SiC2 reaction layer next to the ceramic increases and when the brazing temperature reaches 910 °C, another reaction layer of Ti5Si3 can be found adjacent to the Ti3SiC2 reaction layer. The strength of the joint first increases and then decreases with the increase of both the strengthening phase and the brazing temperature. The highest shear strength of the joint reaches 98 MPa when the joint is achieved at 890 °C using AgCuTi+1.5 wt%B4C brazing filler.  相似文献   

14.
采用AgCuTi钎料实现了Al2O3陶瓷与Fe-Co-Ni合金的钎焊连接,并调查了不同钛含量的钎料对Al2O3/AgCuTi/Fe-Ni-Co钎焊接头机械性能和微观组织结构的影响。扫描电子显微镜(SEM), X射线能量色散光谱仪(EDS), X射线衍射仪(XRD)及电子万能试验机用于分析钎焊接头的机械性能和微观组织结构,结果表明:钛含量的增加明显提高AgCuTi钎料与Al2O3陶瓷的相互作用,在Al2O3/Ag-Cu-Ti界面生成一层由Ti-Al 和 Ti-O化合物组成的反应层。Al2O3/AgCuTi/Fe-Ni-Co钎焊接头的抗拉强度随钛含量的增加而增加,当钛含量提高到8wt.%时,抗拉强度达到最大值78Mpa。通过微观组织结构分析发现,采用AgCu4Ti在890℃保温5min的条件下可以获得较好的钎焊接头,典型接头的微观组织结构为Al2O3/TiAl+Ti3O5/NiTi+Cu3Ti+Ag(s,s)/Ag(s,s)+Cu(s,s)+(Cu,Ni)/Fe-Ni-Co。采用AgCu8Ti获得的钎焊接头的界面反应层与AgCu4Ti差异不大,但反应层稍微增厚,并伴有TiO和Ti3Al在Al2O3/Ag-Cu-Ti界面生成。  相似文献   

15.
以Ag—Cu—Ti箔状钎料对钛合金TCA和不锈钢1Cr18Ni9Ti进行了真空钎焊。采用扫描电镜、能谱分析、金相显微镜和x一射线衍射等分析测试手段对钎焊过程中所形成的反应产物和接头界面结构进行了分析。结果表明:接头界面形成了Ti(s.s)、AS(s.s)、Ti—Cu金属问化合物等反应产物。连接温度较低(920℃)时,界面结构依次为1Cr18Ni9Ti/TiCu/Ag(s.s)+少量Ti2cu/%2cu/Ti2cu+Ti(s.s)/TC4;连接温度升高(960oC)时,界面结构为1Crl8Ni9Ti/Ti:Cu/Ti:Cu+矩(s.s)/Ti2Cu/Ti2Cu+Ti(s.s)/TCA;连接温度较高(1000oC)时,界面结构为1Crl8Ni9Ti/TiCu2/TiCu/Ti2Cu/Ti:Cu+Ti(s.s)/TC4。提高钎焊温度与延长保温时间对钎焊接头界面组织结构有相似的影响,各反应相、反应层逐渐长大,金属问化合物反应相所占比例增大,而Ag(s.s)组织所占的比例变得更小,这种趋势随着焊接工艺参数的提高更加明显。  相似文献   

16.
采用AgCuTi-Al混合粉末作为中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料和钛合金,利用扫描电镜,能谱仪和X射线衍射对接头的微观组织结构进行分析,利用剪切试验测定接头的力学性能.结果表明,在钎焊过程中,钎料中的钛与Cf/SiC复合材料中的基体SiC,碳纤维发生反应,在Cf/SiC复合材料侧形成了TiC,T...  相似文献   

17.
Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号