首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
固相反硝化反应器对含盐水体脱氮效率的预测模型   总被引:1,自引:1,他引:0       下载免费PDF全文
以聚丁二酸丁二醇酯(PBS)颗粒作为反硝化固体碳源和生物膜载体的填料床反应器处理含盐水体的脱氮效果表明,在温度在(29±1)℃的条件下,反应器对含盐水体中NO3--N具有良好的反硝化性能.以NO3--N去除率为响应值,利用响应曲面法考察进水硝酸盐浓度和水力停留时间对脱氮效率的影响.因素分析表明,进水NO3--N和HRT...  相似文献   

2.
生物陶粒反应器的氢自养反硝化研究   总被引:1,自引:1,他引:0  
陈丹  王弘宇  宋敏  杨开  刘晨 《环境科学》2013,34(10):3986-3991
利用氢自养反硝化生物陶粒反应器处理硝酸盐废水,探讨了生物陶粒反应器中氢自养反硝化生物脱氮的实现过程.考察了水力停留时间、进水硝氮负荷、进水pH值、温度、供氢量等因素对反应器脱氮效果的影响.结果表明,当水力停留时间为24 h和48 h时,反应器对硝酸氮的平均去除率分别达到94.54%和97.47%.在水力停留时间为5~16 h时,NO-3-N去除率随水力停留时间的缩短而降低;进水NO-3-N浓度较低时,NO-3-N的降解速率随其浓度的升高而增大,当NO-3-N浓度大于110mg·L-1时,氢自养反硝化反应受到抑制;中偏碱性环境较酸性或碱性环境更利于反应器对硝酸盐的去除;反应器有较宽的温度适应范围,最适温度为25~30℃;当反应器供氢不足时,脱氮效果明显降低,表明了氢自养反硝化菌对氢气利用的专一性.在整个运行阶段,出水中亚硝酸氮浓度一直保持在较低水平.  相似文献   

3.
以PHBV为碳源和生物膜载体的生物反硝化研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用了一种可生物降解聚合物(BDP)聚羟基丁酸戊酸酯(PHBV)作为碳源和生物膜载体去除水体中的硝酸盐.结果表明:以PHBV为碳源和载体的反硝化系统启动时间短,硝酸盐氮(NO3--N)去除率高于93%;水力停留时间(HRT)对反硝化效果影响显著,但反硝化系统对进水硝酸盐氮负荷具有较好的抗冲击能力;出水DOC(溶解性有机碳)浓度低于27.5mg/L,表明PHBV具有一定的控释碳源的能力;反应器不同高度脱氮效果差异显著,反应器中层(10-15cm) 处获得最大NO3--N去除率.  相似文献   

4.
一种新型异养自养集成工艺处理地下水硝酸盐试验   总被引:3,自引:1,他引:2  
研究了一种利用电化学产氢自养反硝化(electrochemical hydrogen autotrophic denitrification)与固相异养反硝化(solid-phase heterotrophic denitrification)集成技术去除地下水中硝酸盐的方法.这种方法能够高效去除水中的硝酸盐且操作简单.试验结果表明,当进水NO3--N浓度为70mg·mL-1,电流强度控制在40mA,HRT为3.9h时,出水中NO3--N浓度为1.2mg·mL-1,硝态氮去除率达到98.3%,TN去除率达到95.6%,反应器中没有NO2--N积累,且pH值稳定在7.0~8.1之间.  相似文献   

5.
以腐朽木为碳源去除废水中硝酸盐氮的研究   总被引:17,自引:8,他引:9  
采用室内装置研究了腐朽木的碳源释放规律,并考察其作为碳源和反应介质的水解-反硝化生物反应器对污水中硝酸盐氮的去除效果.结果表明,腐朽木可有效地释放碳源物质,接种腐殖质组腐朽木释放COD和挥发性脂肪酸(VFA)总量分别是灭菌组的2.3倍和5倍;室温25℃±1℃,进水NO-3-N浓度为30 mg/L,水力停留时间为12 h时,水解-反硝化反应器可获得很好的反硝化效果,保持去除率80%以上稳定运行46 d后,出水硝酸盐氮逐步升高,运行过程中未发现亚硝氮累积.  相似文献   

6.
水培植物生态槽对低C/N污水的脱氮研究   总被引:5,自引:1,他引:4       下载免费PDF全文
选用某污水处理厂的二沉池出水[(TN主要以硝态氮(NO3--N)形式存在)作为研究对象,采取水培植物生态槽进行脱氮试验,着重研究了NO3--N的反硝化过程.结果表明, NO3--N与COD均得到有效去除;生态槽厌氧区水力停留时间(HRT)为10~18h,系统水力负荷为1.33m3/(m3×d),不投外加碳源时,空槽运行NO3--N去除率为10.80%;种植能分泌溶解性有机碳(DOC)的凤眼莲使NO3--N去除率升至15.89%;而硫自养反硝化过程使NO3--N去除率提高至37.80%;投加葡萄糖时,TN与NO3--N的去除率分别达到87.20%和93.21%,出水浓度分别降到2.2,1.04mg/L.  相似文献   

7.
以稻草为碳源和生物膜载体去除水中的硝酸盐   总被引:24,自引:6,他引:18  
邵留  徐祖信  金伟  尹海龙  朱柏荣 《环境科学》2009,30(5):1414-1419
采用室内试验装置,研究了以农业废弃物稻草为反硝化碳源和反应介质的生物反应器对于污水中硝酸盐的去除效果及其影响因素.结果表明,以稻草为反硝化碳源和生物膜载体的反应器启动时间短,对污水中硝酸盐氮的去除效果好,且试验过程中未发现亚硝酸盐累积;进水硝酸盐浓度对装置的处理效果有一定影响,浓度过高会导致硝酸盐的去除率下降;装置对进水DO和pH变化有一定抗性,DO在1.0~3.5 mg/L,pH在6.5~8.5之间变化时,反应器硝酸盐的去除率变化很小,缓冲能力较强;反应器稳定性强,装置运行84 d后,出水硝酸盐开始升高,硝酸盐去除率逐步降低,但去除率仍在50%以上.  相似文献   

8.
研究了连续流复三维电极-生物膜反应器在不同电流、温度和pH条件下的反硝化性能.结果表明,在电流从0mA增加至100mA的过程中,NO3--N去除率随电流增大而升高;电流为100mA时NO3--N去除率最高,达到了73.8%,出水NO3--N浓度为8.27mg.L-1;电流高于100mA时,NO3--N去除率略有下降.电流从0mA增加至150mA的过程中,NO2--N积累量先增加后减少;电流为60mA时NO2--N的积累最为严重.温度为31~35℃时,反硝化效果较好,出水NO3--N浓度低于10mg.L-1;温度为35℃时,NO3--N去除率最高,达到了85.5%.pH值为7.2~8.2时,反硝化效果较为理想,出水NO3--N浓度在10mg.L-1以下,NO2--N浓度低于1mg.L-1.该反应器具有较好的pH缓冲性能,进水pH从5.5上升至9.0的过程中,其出水pH可维持在7.6~8.2,NO3--N去除率在59.6%~80.2%.此外,电流、温度和进水pH还对氨氮的生成量和总磷的去除产生明显影响.通过复三维电极-生物膜反应器与纯电化学反应器的对比试验,对氨氮产生和总磷去除的可能原因进行了分析和探讨.  相似文献   

9.
采用硫/沸石固定床反应器去除水中硝酸盐。实验结果表明,在硫/沸石固定床反应器内通过自养反硝化作用能使水体中硝酸盐得到有效的去除。在硫与沸石的体积比为1∶2,水力停留时间为2 h,进水COD为50 mg/L时,出水硝酸盐去除率可达到95%以上;不外加碳源,总氮的去除率仍可达80%以上;在不投加CaCO3的情况下,出水pH可始终保持7.0;温度对该反应器硝酸盐的去除率影响不大,进水水温为12℃时总氮(TN)去除率仍可达91.1%。  相似文献   

10.
本试验采用室内试验装置,研究了 pH、温度、硝酸盐浓度对锯末+乙醇作为混合碳源去除地下水中硝酸盐的影响结果表明,pH值在5~10内变化时对锯末+乙醇混合碳源体系的硝酸盐去除率影响较大,pH >7时的硝酸盐去除率明显高于pH <7时的去除率;并且随着pH值的增加,亚硝酸盐的积累量越多,锯末+乙醇混合碳源体系最佳的pH值范围是7~8.锯末+乙醇混合碳源体系受温度的影响较大,温度为8.5、15℃时的反硝化速率显著低于25℃时的速率,25℃时的反硝化速率分别是8.5、15℃时的3倍和1.5倍,锯末+乙醇混合碳源体系适宜的温度范围为25 ~35℃进水硝酸盐浓度也会影响锯末+乙醇混合碳源体系的反硝化效果,硝酸盐氮浓度在67.8 ~113 mg·L-1范围内变化时,反应体系的硝酸盐去除效果较好反应初期,硝酸盐浓度越大混合碳源体系的反硝化速率就越低,可能较大的硝酸盐负荷对反硝化细菌产生毒害作用而不利于硝酸盐的去除.  相似文献   

11.
以闭合循环养殖系统去除硝酸盐为目的,研究了以一种非水溶性可生物降解多聚物材料(BDPs)PBS颗粒作为反硝化碳源和生物膜载体的填料床反应器对于废水中硝酸盐的去除效果及动力学特征.结果表明,在温度为(29±1)℃,进水NO 3--N浓度为25~334 mg/L的条件下,进水NO 3--N负荷0.107~1.098 kg/(m3.d)为最适进水负荷.当进水负荷为1.098 kg/(m3.d)时,可达到最大NO 3--N体积去除负荷0.577 kg/(m3.d).进一步增加进水NO 3--N负荷则NO 3--N体积去除负荷开始下降.动力学研究结果表明,以PBS作为碳源和生物膜载体的反硝化速率遵循一级反应动力学.用Eckenfelder模型拟合,并求出常数n值和K值,建立的动力学模型采用该参数可以预测出水NO 3--N浓度.对模型的预测值与实际值采用统计软件SPSS16.0做方差分析表明,p0.05,分别为p=0.5530.05和p=0.6320.05,模型预测值与实际值无显著性差异.  相似文献   

12.
本试验是在厌氧复合床反应器中进行垃圾渗滤液的反硝化-产甲烷的小试研究。试验结果显示,处理有机物浓度较高的垃圾渗滤液时,反硝化-产甲烷能够在厌氧复合床反应器中实现同步进行。厌氧复合床反应器对垃圾渗滤液的COD去除率可达85%,对人工模拟回流的NO3--N去除率可达到99%。在反硝化-产甲烷耦合的同一反应器中,反硝化对COD的消耗去除起主要作用.随着进水COD浓度的升高,产甲烷量增大。当进水ρ(COD)/ρ(NO3--N)>10时,下部的污泥床几乎承担了全部反硝化任务,NO3--N去除率接近反应器总去除率。  相似文献   

13.
不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究   总被引:6,自引:0,他引:6  
针对污水厂尾水氮素高度硝化的现状,通过正交试验研究了不同固体碳源在不同的反应时间、硝氮进水浓度、碳源比例及温度条件下的反硝化速率及对硝态氮的去除率.结果表明,以麦秆为碳源去除硝氮最优条件是温度为25℃,反应时间为10h,进水硝氮浓度为30 mg·L-1,麦秆与水的质量比为1:50;以PHAs为碳源去除硝氮的最优条件是温...  相似文献   

14.
部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液   总被引:16,自引:1,他引:15       下载免费PDF全文
在缺氧滤床+好氧悬浮填料生物膜工艺中实现部分亚硝化,然后进行厌氧氨氧化(ANAMMOX),考察其对高含氮、低C/N污泥脱水液的处理能力.结果表明,亚硝化反应器在15~29℃、DO 6~9mg/L条件下,通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间(HRT)等运行参数,可以调节出水(NO2--N)/(NH4+-N)的比率,能够较好地实现部分亚硝化反应以完成厌氧氨氧化.当进水ALR为1.16kg/(m3·d),进水碱度/氨氮为5.1时,出水(NO2--N)/(NH4+-N)在1.2左右,(NO2--N)/(NOx--N)大于90%,进入ANAMMOX反应器的氮物质去除率达到83.8%.  相似文献   

15.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

16.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1  
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大,pH值为7.5时,在15~35℃范围内,30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

17.
三级生物膜深度处理腈纶废水生化出水的脱氮研究   总被引:3,自引:3,他引:0  
针对腈纶废水生化出水用传统脱氮工艺深度脱氮时碳源不足的问题,采用三级生物膜反应器作为深度处理装置,研究了反应器的启动及进水pH、水力停留时间(HRT)、进水氨氮(NH4+-N)浓度对NH4+-N去除率的影响并确定其最佳运行条件及最佳条件下总氮(TN)的去除效果.结果表明,在HRT为24 h,进水pH为7.8~8.0条件下反应器对NH4+-N和TN的去除效果最佳,平均去除率分别为94.6%和53%;且进水NH4+-N浓度对其去除效果没有明显影响;反应器在不投加有机碳源情况下,对TN有明显去除效果,平均去除率53%,最高去除率达66%,表明三级生物膜反应器深度处理腈纶废水时脱氮效果明显.  相似文献   

18.
以稻秆为固体碳源处理分散养猪冲洗水的试验研究   总被引:1,自引:0,他引:1  
针对分散养猪废水经厌氧和人工湿地处理后存在C/N低的问题,以廉价的稻秆作为固体碳源和生物膜载体,研究反应器启动阶段运行性能、水力负荷的影响以及污染物沿程去除特性.结果表明NO3--N主要在反应器上部稻秆填充层被去除,去除率超过95%,且无明显NO2--N积累,反硝化速率为0.052mg/(g·h).稻秆本身会浸出释放有机物和氮(主要为NH4+-N),导致运行前期出水COD和NH4+-N高于进水,但仍远低于《畜禽养殖业污染物排放标准》(GB18596-2001)的排放限值,40d后COD逐步降至40mg/L左右.COD和NO3--N可在反应器下部的砖渣填充层被进一步去除.  相似文献   

19.
碳源种类及其浓度影响污水处理反硝化过程中一氧化二氮(N2O)的释放。以往关于碳源对反硝化过程中N2O释放特性的研究多采用单一碳源驯化活性污泥,采用混合碳源条件驯化的研究尚少。利用序批式反应器,以蔗糖和乙酸钠为混合碳源驯化反硝化菌。采用批处理试验研究了不同碳源(乙酸钠、葡萄糖和两者混合)在不同碳氮比(COD/N)条件下,利用硝酸盐氮(NO3--N)或亚硝酸盐氮(NO2--N)进行反硝化时N2O的释放。以NO2--N为电子受体进行反硝化时,N2O释放量远大于以NO3--N为电子受体进行反硝化时的释放量。碳源种类影响N2O释放,其释放比从低到高依次为乙酸钠、混合碳源和葡萄糖。以乙酸钠为碳源且当COD/N较低时,由于NO2--N积累和内源反硝化,导致较多N2O的释放,而在碳源相对充足情况下释放量较少。以葡萄糖为碳源时,由于反硝化速率较低,N2O释放量大于利用乙酸钠时的释放量,同时释放量随COD/N比的增加而增加。在混合碳源条件下,反硝化菌优先利用乙酸钠进行反硝化,N2O释放量随COD/N比的增加而降低。  相似文献   

20.
缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨   总被引:1,自引:1,他引:0  
李巍  赵庆良  刘颢 《环境科学》2008,29(7):1855-1859
在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物,硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号