首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 531 毫秒
1.
基于TDLAS的气体温度测量   总被引:3,自引:2,他引:3  
介绍了基于可调谐半导体激光吸收光谱(TDLAS)的气体温度测量原理,选择了1对O2吸收谱线13 163.78 cm-1和13 164.18 cm-1,理论计算了此谱线对线强比值R与温度的关系,在搭建的高温实验装置上实现了O2温度和浓度的同时测量,并分析了压力对温度测量的影响。实验结果表明:在823~1 323 K内,温度测量的线性误差为0.65%。最大波动为±15 K,压力变化对温度测量的影响可忽略不计。  相似文献   

2.
为了实现二氧化碳气体温度的实时、非接触测量,研究基于可调谐二极管激光吸收光谱技术(TDLAS)的温度测量方法。根据单激光器的电流调谐特性和谱线对的选择标准,选取6241.402828 cm-1、6242.672190 cm-1处的两条对温度有不同依赖关系的二氧化碳谱线进行分析。针对二次谐波幅度法和一、二次谐波幅度比值法所存在的问题,提出应用一次谐波信号的TDLAS温度测量方案。首先测量两吸收谱线的一次谐波峰峰值和平均值,以峰峰值和平均值的比值作为单吸收线的输出,再以两吸收线输出值之比来实现气体温度的测量。实验结果表明:在200~1000K范围内,气体温度测量误差小于30 K。该温度测量方案可消除光强波动对温度测量产生的影响,且仅需检测一次谐波信号,系统结构简单,性能稳定,可以满足二氧化碳气体温度实时、非接触测量的需要。  相似文献   

3.
开发了一种可调谐半导体激光吸收传感器,用于测量气体的温度,应用扫描波长吸收谱和固定波长调制谱探测水蒸气在7 454.4 cm-1和7 185.6 cm-1附近的两条吸收谱线。传感器可实现绝对温度测量,固定波长调制谱更可实现10 kHz以上的测量带宽。传感器的性能和精度在已知温度和压力的静室中进行测量验证,在600~1 000 K的设定温度范围,两种方法的测量误差(RMS)都小于2%。表明可调谐半导体激光吸收光谱(TDLAS)传感器对于均匀的流场具有快速和精确的温度测量能力。  相似文献   

4.
酒精是相对复杂的分子,在常压下为宽带吸收,其OH基团的泛频吸收区位于近红外7000~7300cm-1处.利用可调谐二极管激光光谱学(TDLAS)方法测量了含有少量水汽的酒精蒸汽在7180 cm-1附近的吸收谱线,通过多项式拟合消除水汽吸收谱线干扰,获得了酒精蒸汽的特征吸收光谱,其半高半宽为1.3cm-1;并对不同浓度酒精蒸汽吸收谱线线型做了研究,证明其线型与酒精分压不相关,为发展基于TDLAS酒驾遥测技术奠定了基础.  相似文献   

5.
基于激光吸收光谱技术的超声速气流参数测量   总被引:1,自引:0,他引:1       下载免费PDF全文
采用可调谐半导体激光吸收光谱(TDLAS)技术,针对超声速直连台隔离段内超声速气流温度、组分浓度、速度和质量流量进行了测量.选择H2O的两条吸收谱线7 185.597 cm-1和7 454.445 cm-1,采用直接吸收-分时扫描方式,测量流场静温为899 K,并结合吸收面积得到H2O的组分浓度20.7%.根据安装在流场上游和下游成60的两条光路,测量流场速度为1 205 m/s,结合壁面压力传感器,测量流场的质量流量为1 500.49 g/s,较真实值偏差为5.23%.TDLAS测量系统实现了对超声速气流多参数快速线测量.  相似文献   

6.
利用可调谐二极管激光吸收光谱技术(TDLAS),基于吸收光谱的多普勒展宽原理,对D2/NF3燃烧驱动的HBr化学激光器,进行了光腔和扩压段的气体温度测量实验研究。为了有效地测量TDLAS吸收光谱,选用了主气流中吸收系数较大的HF分子(2-0)振动谱带的R2谱线作为研究对象。实验中利用一台中心波长1 273 nm的分布反馈式(DFB)二极管激光器,搭建了一套基于直接吸收法TDLAS的HBr化学激光器气体温度测量系统。通过对HF分子的吸收谱线进行Voigt线型拟合,获得了多普勒展宽宽度,从而给出了光腔和扩压段气体温度。在进行时域频域变换时,使用了一台自由光谱范围(FSR)为1.5 GHz的F-P标准具用于频率校准。实验测量结果表明,光腔温度约为280 K,扩压段温度约为400 K。实验过程中的碰撞展宽和多普勒展宽的比值小于0.1,表明多普勒展宽为主,能够方便地用HF吸收光谱的展宽来监测光腔和扩压段的气体温度。  相似文献   

7.
基于对水蒸气的吸收谱线在超音速流场的多普勒效应,结合HITRAN数据库,选取适合当前环境的吸收谱线7181.1558 cm-1,结合超音速风洞装置建立起一套基于可调谐二极管激光吸收光谱(TDLAS)技术的实验装置,测量对应频移,分析反演出流场速度,实验结果表明,在高速环境下,系统测量流速为563.06 m/s,线性误差为5.09%,效果良好,从而为对激波管等高速脉冲设备的进一步测量实验打下了良好基础。  相似文献   

8.
可调谐二极管激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)技术是一种具有高灵敏度、高分辨率的气体吸收光谱检测技术,具有响应快、精度高、单模特性优秀、通用性强等优势。TDLAS直接吸收法通过测量绝对吸收强度来计算待测气体温度和浓度,但容易受到颗粒物浓度、激光强度波动等影响。TDLAS波长调制法采用高频正弦信号对激光器进行调制,使得激光输出频率和强度同时受到调制,具有高信噪比和灵敏度的特点,但是需要通过标定实验或复杂的算法来确定气体参数。因此,通过吸收光谱理论和波长调制理论,推导出蕴含分子吸收信息的谐波通项表达式,并在此基础上分析谐波信号与待测气体绝对吸收强度之间的关系,建立了一种基于谐波信号的绝对吸收强度测量算法。以NH3分子在1 531 nm附近的谱线为例进行数值分析,发现调制幅度达到a=0.032 cm-1(调制系数m=2)时,仿真结果与理论计算结果(a=0)相对误差不超过2%,进一步验证了算法的可靠性与准确性。  相似文献   

9.
对烟气脱硝后的氨逃逸进行准确、灵敏、快速监测,避免氨气对环境的二次污染是工业和环保领域的工作重点之一。选择氨气1.53 m 的单根吸收谱线为目标谱线,结合可调谐半导体激光吸收光谱技术(TDLAS)和波长快速扫描技术研究了高温烟气氨逃逸原位监测方法,并设计了相应的开放光路测量系统。分析了高温环境下温度对测量的影响,研究了温度修正方法,并设计了烟道现场氨浓度免定标精确反演算法,由实验得出最大相对检测误差为1.5%。通过工业现场的安装运行验证了文中系统的工程实用性和算法的可靠性,对于我国工业脱硝过程的监控和烟气安全排放起有效的技术支持。  相似文献   

10.
选择性催化还原(SCR)是燃煤发电中降低NOx排放使用最多的技术,化学还原反应中氨气(NH3)温度是闭环控制SCR过程的关键参数之一。提出了一种基于激光双吸收谱线的氨气温度测量方法,实现SCR过程化学反应温度实时监测。利用HITRAN08数据库,选取一对氨气的吸收谱线6605.1042 cm-1和6605.1901 cm-1,理论推导了两条吸收谱线的强度比与温度的关系。实验结果显示,在80~160 ℃温度范围内,温度测量的线性误差为0.89%(平均值),最大波动为3.5%,为下一步高温测量氨气浓度和温度测量奠定了基础。  相似文献   

11.
利用输出波长在2.0 μm处的分布反馈激光器对CO2气体的两条特征谱线进行扫描以实现气体温度的测量。介绍了利用可调谐激光吸收光谱方法进行温度测量的基本原理,提出了用多线组合非线性最小二乘法拟合高温吸收光谱的吸光度方法。常压下在静态高温炉中进行了实验,设定温度为900 K~1200 K时,经实验得到的温度值与热电偶测量值的温差在8%以内,计算得到CO2的5007.7874 cm-1吸收线强与理论计算值相对误差小于14%。为今后的气体温度测量及多参数同时测量提供了借鉴。  相似文献   

12.
燃烧场温度的测量对于燃烧诊断具有重要意义。开展了基于可调谐半导体激光吸收光谱 (Tunable diode laser absorption spectroscopy, TDLAS)的在 线测温方法研究,基于双光束分时扫描技术,实现了双激光器协同工作与燃烧产物水汽 7154.35 cm$^{-1}$ 和7467.77 cm$^{-1}$两条吸收谱线的同时测量,并利用双线积分吸光度比值关系完成温度的精确反演, 满足燃烧场温度在线检测应用需要。开展了针对甲烷/空气预混平焰炉火焰温度的实时检测实验研究, 并与热电偶进行了测温对比分析,两种方法的测量具有较好的一致性,相对误差小于3.8\%,验证 了TDLAS技术对燃烧场温度非侵入式快速测量的可行性和可靠性。  相似文献   

13.
基于数字信号处理器的激光光谱瓦斯监测系统   总被引:5,自引:4,他引:1  
利用可调谐二极管激光吸收光谱(TDLAS)技术,选择不受干扰的1653.72nm波长处的吸收线监测煤矿瓦斯浓度,并结合了高性能的数字信号处理器(DSP)和二次谐波检测技术,进一步降低了检测限,使检测限低于0.074mg/m3,实现了对瓦斯浓度高稳定性和高灵敏度的实时测量。  相似文献   

14.
精确检测气体浓度在大气环境保护、工业生产控制、废气排放监测等领域有着迫切需求。可调谐二极管激光吸收光谱技术(TDLAS)是实现气体浓度精确检测的重要方法,然而温度变化却为浓度精确测量带来较大误差,因而对检测结果进行温度修正是十分必要的。本文从理论角度出发,阐述了TDLAS技术检测气体浓度的温度影响机理,重点分析并归纳了基于TDLAS技术的气体浓度测量的温度影响修正方法,并展望了其发展趋势。  相似文献   

15.
基于红外TDLAS技术的高精度CO2同位素检测系统的研制   总被引:1,自引:0,他引:1  
侯月  黄克谨  于冠一  张鹏泉 《红外与激光工程》2021,50(4):20200083-1-20200083-5
对天然气分布监测,高精度地检测CO2同位素是非常重要的。采用可调谐二极管激光吸收光谱(TDLAS)技术,通过13CO2/12CO2在4.3 μm处的吸收谱线,实现高精度CO2同位素检测。该检测系统由工作在连续波模式下的中红外间带级联激光器(ICL)、长光程多通池(MPGC)和中红外碲镉汞(MCT)探测器组成。针对13CO2和12CO2两条吸收谱线强度受温度影响的问题,研制了MPGC高精度温度控制系统。实验中,配置5种不同浓度的CO2气体对检测系统进行标定,响应线性度可达0.999 6。结果表明,当积分时间为92 s时,同位素检测精度低至0.013 9‰,具备实际应用价值。  相似文献   

16.
提出了一种新型的连续激光振铃吸收光谱方法,采用由高反射率腔镜组成的谐振腔作气体吸收池,通过压电晶体对谐振腔以4Hz频率进行扫描调制,对连续波激发光源在一定光谱范围内以0.001Hz的低重复频率进行同步光谱扫描,让振铃腔与激光频率形成共振.通过探测腔模的透射峰光强,获得光谱信息.采用该技术在0.5mbar的极低气压下,探测到CO2在6537cm^-1和6577cm^-1附近的弱吸收谱线(10^-27.10^26cm^-1/(molecute.cm^-2),其检测灵敏度远高于常规红外吸收光谱方法,为气态原子、分子和离子的微量探测提供了高灵敏度的光谱分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号