首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Abstract

The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   

2.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

3.
A series of V2O5/TiO2-carbon nanotube (CNT) catalysts were synthesized by sol-gel method, and their activities for NOX removal were compared. A catalytic promotional effect was observed by adding CNTs to V2O5/TiO2. The catalyst V2O5/TiO2-CNTs (10 wt.%) showed an NOX removal efficiency of 89% at 300 °C under a GHSV of 22,500 h−1. Based on X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, NH3-temperature-programmed desorption, temperature-programmed reduction, Brunauer-Emmett-Teller surface area measurements, differential scanning calorimetry, and thermogravimetric analysis, the increased acidity and reducibility, which could promote NH3 adsorption and oxidation of NO to NO2, respectively, contributed to this promotion.  相似文献   

4.
We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations.  相似文献   

5.
NO was oxidized into NO2 first by injecting ozone into flue gas stream, and then NO2 was absorbed from flue gas simultaneously with SO2 by pyrolusite slurry. Reaction mechanism and products during the absorption process were discussed in the followings. Effects of concentrations of injected ozone, inlet NO, pyrolusite and reaction temperature on NOx/SO2 removal efficiency and Mn extraction rate were also investigated. The results showed that ozone could oxidize NO to NO2 with selectivity and high efficiency, furthermore, MnO2 in pyrolusite slurry could oxidize SO2 and NO2 into MnSO4 and Mn(NO3)2 in liquid phase, respectively. Temperature and concentrations of injected ozone and inlet NO had little impact on both SO2 removal efficiency and Mn extraction rate. Specifically, Mn extraction rate remained steady at around 85% when SO2 removal efficiency dropped to 90%. NOx removal efficiency increased with the increasing of ozone concentration, inlet NO concentration and pyrolusite concentration, however, it remained stable when reaction temperature increased from 20 °C to 40 °C and decreased when the flue gas temperature exceeded 40 °C. NOx removal efficiency reached 82% when inlet NO at 750 ppm, injected ozone at 900 ppm, concentration of pyrolusite at 500 g/L and temperature at 25 °C.  相似文献   

6.
This study investigated the activities of prepared and commercial V2O5–WO3 catalysts for simultaneous removals of NO and polycyclic aromatic hydrocarbons (PAHs) and the influences of particulates, heavy metals, SO2, and HCl on the performances of catalysts. The experiments were carried out in a laboratory-scale waste incineration system equipped with a catalyst reactor. The DREs of PAHs by prepared and commercial V2O5–WO3 catalysts were 64% and 72%, respectively. Increasing the particulate concentrations in flue gas suppressed the DRE of PAHs, but increasing the carbon content on surface of catalysts promotes the NO conversions. The DRE of PAHs by the catalysts was significantly decreased by the increased concentrations of heavy metal Cd, but was promoted by high concentration of Pb. The influence level of SO2 was higher than HCl on the performances of V2O5–WO3 catalysts for PAHs removal, but was lower than HCl for NO removal. Prepared and commercial V2O5–WO3 catalysts have similar trends on the effects of particulates, heavy metals, SO2, and HCl. The results of ESCA analysis reveal that the presences of these pollutants on the surface of catalysts did not change the chemical state of V and W.  相似文献   

7.
Abstract

Supported Co-Mo catalysts with a given ratio of metals were prepared from polyoxomolybdate Mo12O282-OH)12{Со(H2O)3}4 using impregnation and combustion methods. Effects of the type of catalyst and the ratio and flow of methane and hydrogen gases on the structure of carbon nanotubes (CNTs) synthesized by catalytic chemical vapor deposition (CCVD) method were studied using transmission electron microscopy and Raman spectroscopy. The catalyst prepared by combustion method yielded mainly individualized CNTs, while the CNTs were highly entangled or bundled when impregnation method was used. In both cases, addition of hydrogen to methane led to reduction of the CNT yield. The samples synthesized using two different catalysts and the same CH4/H2 ratio and flow of gases were tested in electrochemical capacitors. A higher specific surface area of the CNTs grown over impregnation-prepared catalyst caused a better performance at scan rates from 2 to 1000?mV/s.  相似文献   

8.
In the present study the intestine-like binary SnO2/TiO2 hollow nanostructures are one-pot synthesized in aqueous phase at room temperature via a colloid seeded deposition process in which the intestine-like hollow SnO2 spheres and Ti(SO4)2 are used as colloid seeds and Ti-source, respectively. The novel core (SnO2 hollow sphere)-shell (TiO2) nanostructures possess a large surface area of 122 m2/g (calcined at 350 °C) and a high exposure of TiO2 surface. The structural change of TiO2 shell at different temperatures was investigated by means of X-ray diffraction and Raman spectroscopy. It was observed that the rutile TiO2 could form even at room temperature due to the presence of SnO2 core and the unique core-shell interaction.  相似文献   

9.
A visible light active photodegration catalyst was prepared by doping MoO3 into MgF2 matrix. The addition of SO42− into MoOx/MgF2 could improve the catalytic activity greatly and an acetone conversion of 96.1% under visible light was obtained on the SO42−/5% MoOx/MgF2 (SMM) catalyst. By BET, XRD, Raman, FT-IR, XPS, UV–vis technology the specific area, structure and photoadsorption ability of the catalysts were characterized. The high photocatlaytic activity of the SMM catalyst is attributed to its large specific area, the high dispersal of MoO3 domains in MgF2 and the inhibiting effect of MgF2 matrix on the electron–hole pair recombination.  相似文献   

10.
陈玲  赵倩  汪洋  柴牧原  徐志勇  赵文波 《材料导报》2018,32(17):2949-2958, 2968
SO_2是一种无色、有强烈刺激性气味的气体,弥散在空气中的SO_2对人体健康、生态环境有着严重的危害,是导致空气质量不断恶化的主要大气污染物之一。人为造成的SO_2污染物的主要来源有燃料燃烧、工业生产、交通运输等,其中燃料燃烧占70%。因此,削减和控制燃料燃烧所产生的SO_2的排放是我国能源利用和环保领域的重要研究方向,烟气脱硫是应对烟气中SO_2排放的有效途径。湿法烟气脱硫是目前应用最广泛的方法,占世界安装烟气脱硫机组总容量的85%,采用该方法处理的烟气占总处理量的80%。在湿法烟气脱硫技术中比较实用的主要包括钙法脱硫、有机胺脱硫、海水脱硫。其中,钙法脱硫的脱硫效率高,对煤种的适应性较强,但是脱硫会产生CaSO_4沉淀,降低经济效益;有机胺脱硫的系统腐蚀性小,副产品可生产硫酸,但是胺易挥发,造成吸收剂损失和环境污染;海水法脱硫的工艺简单、运行可靠,但其应用受到地域的影响,并且对环境也会产生一定的影响。离子液体是一种新兴的绿色介质,它具有环保、可再生、结构可调控的优点,为解决传统工艺中的污染问题提供了新方案。在离子液体吸收气体的过程中,吸收液不会因其挥发性而蒸发进入气相,并且可以在较低的温度下完成吸收解吸循环。离子液体的这些优良特性使其在SO_2吸收方面有着极广阔的应用前景。目前,研究者们已合成了一系列胍盐类、咪唑类、醇胺类、吡啶类等离子液体,探究其吸收SO_2的性能与机理,并根据其结构可设计的特点,在离子液体中的阴阳离子上引入各类官能团(如氰基、醚基、氨基、卤素),合成满足特定需求的离子液体,使其高效、可逆、低耗地吸收SO_2。本文总结了近年来各类离子液体吸收SO_2的性能和机理,为系统地认识离子液体在SO_2分离领域的应用提供了帮助;重点阐明了离子液体中阴阳离子的种类、官能化,尤其是酸碱性对其吸收SO_2的影响,这为调整离子液体酸碱性、合理设计离子液体的结构,探索离子液体吸收SO_2的机理,改善其对SO_2的吸收性能有着重要的价值。最后指出了目前研究中存在的问题并且对未来新型离子液体的合成进行了展望。  相似文献   

11.
The removal of NOx from mixtures of NO-NO2-N2 and NO-NO2-O2-H2O is discussed theoretically in this study, and the removal of 2SO and xNO is further discussed when a gas system of NOx-N2-O2-H2O contains CO2 and SO2. The involved chemical reaction rate equations in the process of SO2/NOx removal are solved numerically using Treanor's method, in which a scheme separating chemical reactions into fast and slow groups has been proposed for improving the numerical stability. Numerical results show that the contribution of ion reactions to xNO removal is negligible, and that high temperature is not beneficial for the NO oxidation. However, high concentration of O2 is conducive to the NO oxidation. Addition of water facilitates the NOx removal, and increasing water vapor concentration enhances the NOx removal efficiency; inclusion of CO2 and SO2 into the system favors the NO removal.  相似文献   

12.
Abstract

We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations.  相似文献   

13.
The Cu4SO4(OH)6 was synthesized by a simple hydrothermal reaction with a yield of ~ 90%. Using Cu4SO4(OH)6 as the starting material, novel fishbone-like Cu(OH)2 was produced by a direct reaction of Cu4SO4(OH)6 with NaOH solution. The Cu(OH)2 consists of many needle-like nanorods parallel to each other and perpendicular to the direction of backbone, forming fishbone-like structure. Using the fishbone-like Cu(OH)2 as the sacrificial precursor, CuO with similar size and morphology was obtained through a simple heat treatment. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, X-ray photoelectron spectroscopy, BET nitrogen adsorption, and UV-Vis absorption spectroscopy were employed to characterize the as-prepared samples. The conversion of the Cu4SO4(OH)6 to the fishbone-like Cu(OH)2 was visualized by time-dependent SEM images. A mechanism was also proposed based on the observed results.  相似文献   

14.
In this study, we have successfully deposited N-doped SiO2/TiO2 thin films on ceramic tile substrates by sol–gel method for auto cleaning purpose. After dip coating and annealing process the film was transparent, smooth and had a strong adhesion on the ceramic tile surface. The synthesised catalysts were then characterised by using several analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM) and UV-vis absorption spectroscopy (UV-vis). The analytical results revealed that the optical response of the synthesised N-doped SiO2/TiO2 thin films was shifted from the ultraviolet to the visible light region. The nitrogen substituted some of the lattice oxygen atoms. The surface area of co-doped catalyst increased, and its photocatalytic efficiency was enhanced. The photocatalytic tests indicated that nitrogen co-doped SiO2/TiO2 thin films demonstrated higher than of the SiO2/TiO2 activity in decolouring of methylene blue under visible light. The enhanced photocatalytic activity was attributed to an increasing of the surface area and a forming of more hydroxyl groups in the doped catalyst.  相似文献   

15.
NiSix films were deposited using chemical vapor deposition (CVD) with a Ni(PF3)4 and Si3H8/H2 gas system. The step coverage quality of deposited NiSix was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF3 gas from decomposition of Ni(PF3)4 increased. By injecting PF3 gas into the Ni(PF3)4 and Si3H8/H2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 °C is larger than at 180 °C. It caused a decreasing relative deposition rate of Ni to Si. PF3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species.  相似文献   

16.
Mass production of transparent semiconducting ternary oxide Zn2SnO4 nanowires is successfully synthesized by the thermal evaporation method without any catalyst. The as-synthesized products are characterized with field-emission scanning electron microscope (FE-SEM), X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS), high-resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SEAD). A formation of Zn2SnO4 nanowires based on a self-catalytic VLS growth mechanism is discussed. The photoluminescence spectrum (PL) of the nanowires shows a broad blue-green emission around the 300-600 nm wavelengths with a maximum center at 580 nm under room temperature.  相似文献   

17.
Thin films of different Li2O–ZnO–Co3O4–TiO2 (LZCT) compositions were prepared and employed as electrocatalysts (i.e., anodes) to perform water oxidation reaction (WOR). The electrocatalytic activities of these thin films were compared with those exhibited by the sodium salt of cobalt phosphate (Na2CoP2O7) (CP) thin-film electrocatalyst, which is a well-known water oxidation catalyst (WOC). These results suggest that the 10Li2O–10ZnO–40Co3O4–40TiO2 composition exhibits a better catalytic activity in terms of higher faradaic efficiency (>98%), lower over potentials (<400?mV), higher reaction stability (up to 30 continuous cyclic voltammetry (CV) cycles), and the rate of O2 and H2 gas evolution in terms of current density (about 1?mA/cm2) in comparison with those exhibited by CP thin-film electrocatalyst. Furthermore, these LZCT thin films exhibited very high specific surface area values and due to the unique microstructure of ZnCo2O4 phase evolved out of these LZCT compositions at a calcination temperature of 550°C for 30?min it has been found to be responsible for the higher specific surface area values measured for these thin-film compositions.  相似文献   

18.
Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H2SO4/Eu(NO3)3 mixture solution.The specific surface area and the roughness of the anodic titania film fabricated in the H2SO4/Eu(NO3)3 electrolyte, were increased compared to that of the anodic TiO2 film prepared in H2SO4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO2 band gap by N and Eu co-doping.  相似文献   

19.
Different amounts of Co-doped TiO2 powders and thin films were prepared by following a conventional co-precipitation and sol–gel dip coating technique, respectively. The synthesized powders and thin films were subjected to thermal treatments from 400 to 800 °C and were thoroughly investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive analysis with X-rays, FT-infrared, FT-Raman, diffuse reflectance spectroscopy, ultraviolet–visible spectroscopy, BET surface area, zeta potential, flat band potential measurements, band-gap energy, etc. The photocatalytic ability of the powders was evaluated by methylene blue (MB) degradation studies. The thin films were characterized by photocurrent and ultraviolet–visible (UV–Vis) spectroscopy techniques. The characterization results suggest that the Co-doped TiO2 powders synthesized in this study consist mainly anatase phase, and possess reasonably high specific surface area, low band gap energy and flat band potentials amenable to water oxidation in photoelectrochemical (PEC) cells. The photocatalytic degradation of MB over Co-doped TiO2 powders followed the Langmuir–Hinshelwood first order reaction rate relationship. The 0.1 wt.% Co-doped TiO2 composition provided the higher photocurrent, n-type semi-conducting behavior and higher photocatalytic activity among various Co-doped TiO2 compositions and pure TiO2 investigated.  相似文献   

20.
WO3 thin films having different effective surface areas were deposited under various discharge gas pressures at room temperature by using reactive magnetron sputtering. The microstructure of WO3 thin films was investigated by X-ray diffraction, scanning electron microscopy, and by the measurement of physical adsorption isotherms. The effective surface area and pore volume of WO3 thin films increase with increasing discharge gas pressure from 0.4 to 12 Pa. Gas sensors based on WO3 thin films show reversible response to NO2 gas and H2 gas at an operating temperature of 50-300 °C. The peak sensitivity is found at 200 °C for NO2 gas and the peak sensitivity appears at 300 °C for H2 gas. For both kinds of detected gases, the sensor sensitivity increases linearly with an increase of effective surface area of WO3 thin films. The results demonstrate the importance of achieving high effective surface area on improving the gas sensing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号