首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
In topology optimization of a continuum, it is important to consider stress-related objective or constraints, from both theoretical and application perspectives. It is known that the problem is challenging. Although remarkable achievements have been made with the SIMP (Solid Isotropic Material with Penalization) framework, a number of critical issues are yet to be fully resolved. In the paper, we present an approach of a shape equilibrium constraint strategy with the level-set/X-FEM framework. We formulate the topology optimization problem under (spatially-distributed) stress constraints into a shape equilibrium problem of active stress constraint. This formulation allows us to effectively handle the stress constraint, and the intrinsic non-differentiability introduced by local stress constraints is removed. The optimization problem is made into one of continuous shape-sensitivity and it is solved by evolving a coherent interface of the shape equilibrium concurrently with shape variation in the structural boundary during a level-set evolution process. Several numerical examples in two dimensions are provided as a benchmark test of the proposed shape equilibrium constraint strategy for minimum-weight and fully-stressed designs and for designs with stress constraint satisfaction.  相似文献   

3.
We propose a shape optimization method over a fixed grid. Nodes at the intersection with the fixed grid lines track the domain’s boundary. These “floating” boundary nodes are the only ones that can move/appear/disappear in the optimization process. The element-free Galerkin (EFG) method, used for the analysis problem, provides a simple way to create these nodes. The fixed grid (FG) defines integration cells for EFG method. We project the physical domain onto the FG and numerical integration is performed over partially cut cells. The integration procedure converges quadratically. The performance of the method is shown with examples from shape optimization of thermal systems involving large shape changes between iterations. The method is applicable, without change, to shape optimization problems in elasticity, etc. and appears to eliminate non-differentiability of the objective noticed in finite element method (FEM)-based fictitious domain shape optimization methods. We give arguments to support this statement. A mathematical proof is needed.  相似文献   

4.
The present paper introduces a numerical solution to shape optimization problems of domains in which boundary value problems of partial differential equations are defined. In the present paper, the finite element method using NURBS as basis functions in the Galerkin method is applied to solve the boundary value problems and to solve a reshaping problem generated by the H1 gradient method for shape optimization, which has been developed as a general solution to shape optimization problems. Numerical examples of linear elastic continua illustrate that this solution works as well as using the conventional finite element method.  相似文献   

5.
Conventional shape optimization based on the finite element method uses Lagrangian representation in which the finite element mesh moves according to shape change, while modern topology optimization uses Eulerian representation. In this paper, an approach to shape optimization using Eulerian representation such that the mesh distortion problem in the conventional approach can be resolved is proposed. A continuum geometric model is defined on the fixed grid of finite elements. An active set of finite elements that defines the discrete domain is determined using a procedure similar to topology optimization, in which each element has a unique shape density. The shape design parameter that is defined on the geometric model is transformed into the corresponding shape density variation of the boundary elements. Using this transformation, it has been shown that the shape design problem can be treated as a parameter design problem, which is a much easier method than the former. A detailed derivation of how the shape design velocity field can be converted into the shape density variation is presented along with sensitivity calculation. Very efficient sensitivity coefficients are calculated by integrating only those elements that belong to the structural boundary. The accuracy of the sensitivity information is compared with that derived by the finite difference method with excellent agreement. Two design optimization problems are presented to show the feasibility of the proposed design approach.  相似文献   

6.
《Computers & Structures》2001,79(20-21):1977-1985
In this paper, the stiffness optimization problem is investigated for structures with geometrical nonlinearities. The mean compliance of the structure is chosen as the objective function and its sensitivities are derived using the adjoint method. The optimal problem is formulated using a microstructure-based design domain method and is solved iteratively by a sequential convex approximation method. Three numerical examples are presented to show the applications of the proposed method and the results demonstrate that the geometrically nonlinear finite element analysis is indispensable to the optimization process of large displacement structures.  相似文献   

7.
The external boundary of a structure described by a set of design parameters undergoes shape modification. Arbitrary stress, strain and displacement functionals are defined within the domain of the structure and its first- and second-order sensitivities with respect to varying structural shape are discussed. The optimal shape design problem is then formulated and solved using the first- and second-order sensitivity information. The iterative analysis-redesign algorithm is formulated using the finite element method. Some illustrative examples are included.  相似文献   

8.
为求解平面裂纹问题的应力强度因子,提出基于Muskhelishvili基本解和样条虚边界元法的样条虚边界元交替法.该方法将平面内带裂纹有限域问题分解成带裂纹无限域问题与不带裂纹有限域问题的叠加.带裂纹无限域问题利用Muskhelishvili基本解法直接得出,不带裂纹有限域问题采用样条虚边界元法求解.利用该方法对复合型中心裂纹方板和I型偏心裂纹矩形板进行分析.数值结果表明该方法精度高且适用性强.  相似文献   

9.
针对在Shishkin网格上数值求解含有两个参数的奇异摄动问题,在有限差分方法的基础上,将Shishkin网格过渡点参数选取问题转化成一个无约束优化问题,并采用差分进化算法进行求解。数值结果表明用差分进化算法得到最优Shishkin网格参数后,奇异摄动问题的数值解在边界层的精度得到了明显的提高,进一步说明了方法的有效性和可靠性。  相似文献   

10.
The paper describes a novel formulation for the computation of the design sensitivities required for shape optimization problems using the indirect boundary element method. As a first stage, the system of equations that evaluate the fictitious traction sensitivities is differentiated with respect to shape design variables. The stress or displacement sensitivities are then evaluated by direct substitution of the fictitious traction sensitivities into the differentiated stress or displacement kernels. Two other finite difference-based techniques for the evaluation of the stress sensitivities, using the indirect boundary element method are also presented. The advantages and the drawbacks of each approach are discussed. These methods have been shown to be effective, accurate and can be incorporated in an existing BE code with much less programming effort than other BE-based techniques. The efficiency of the three methods is illustrated by optimizing the shape of a 90° V-notch. In all cases, convergence is achieved within three to four iterations.Various approximate techniques are suggested to minimize the computation cost of the optimization problem. These techniques are based on the fundamental features of the stress field, the differentiated kernels and the system of matrices of the optimization problem. Investigations have shown that employing these techniques yields more than a 50% reduction in computer time with insignificant loss of accuracy.  相似文献   

11.
In this paper the topology optimization problem is solved in a finite strain setting using a polyconvex hyperelastic material. Since finite strains is considered the definition of the stiffness is not unique. In the present contribution, the objective of the optimization is minimization of the end-displacement for a given amount of material. The problem is regularized using the phase-field approach which leads to that the optimality criterion is defined by a second order partial differential equation. Both the elastic boundary value problem and the optimality criterion is solved using the finite element method. To approach the optimal state a steepest descent approach is utilized. The interfaces between void and full material are resolved using an adaptive finite element scheme. The paper is closed by numerical examples that clearly illustrates that the presented method is able to find optimal solutions for finite strain topology optimization problems.  相似文献   

12.
The general transient linear elastodynamic problem under conditions of plane stress or plane strain is numerically solved by a special finite element method combined with numerical Laplace transform. A rectangular finite element with eight degrees of freedom is constructed on the basis of the governing equations of motion in the Laplace transformed domain. Thus the problem is formulated and numerically solved in the transformed domain and the time domain response is obtained by a numerical inversion of the transformed solution. Viscoelastic material behavior is easily taken into account by invoking the correspondence principle. The method appears to have certain advantages over conventional finite element techniques.  相似文献   

13.
The finite element analysis method is used to examine the influence of manufacturing-induced thermal residual stresses on the optimal shape of stiffeners in stiffened, symmetrically laminated plates. Three stiffener arrangements are studied via an optimization process in which the objective is to maximize the first natural frequency of the stiffened plate. The optimization problem is solved using the method of moving asymptotes (MMA). The numerical simulations indicate that thermal residual stresses can either cause a dispersion of stiffeners along the perimeter or a concentration around the centre. Further, the optimum fundamental frequency tends to increase with increasing temperature difference.  相似文献   

14.
Single scale wavelet approximations in layout optimization   总被引:1,自引:0,他引:1  
The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure.  相似文献   

15.
The use of the finite element method (FEM) for buckling topology optimization of a beam cross section requires large numerical cost due to the discretization in the length direction of the beam. This investigation employs the finite prism method (FPM) as a tool for linear buckling analysis, reducing degrees of freedom of three-dimensional nodes of FEM to those of two-dimensional nodes with the help of harmonic basis functions in the length direction. The optimization problem is defined as the maximization problem of the lowest eigenvalue, for which a bound variable is introduced and set as the design objective to treat mode switching phenomena of multiple eigenvalues. The use of the bound formulation also helps the proposed optimization to treat beams having local plate buckling modes as the fundamental modes as well as beams having global buckling modes. The axial stress is calculated according to the distribution of material modulus which is interpolated using the SIMP approach. Optimization problems finding cross-section layouts from rectangular, L-shaped and generally-shaped design domains are solved for various beam lengths to ascertain the effectiveness of the proposed method.  相似文献   

16.
The quality of finite element meshes is one of the key factors that affect the accuracy and reliability of finite element analysis results. In order to improve the quality of hexahedral meshes, we present a novel hexahedral mesh smoothing algorithm which combines a local regularization for each hexahedral mesh, using dual element based geometric transformation, with a global optimization operator for all hexahedral meshes. The global optimization operator is composed of three main terms, including the volumetric Laplacian operator of hexahedral meshes and the geometric constraints of surface meshes which keep the volumetric details and the surface details, and another is the transformed node displacements condition which maintains the regularity of all elements. The global optimization operator is formulated as a quadratic optimization problem, which is easily solved by solving a sparse linear system. Several experimental results are presented to demonstrate that our method obtains higher quality results than other state-of-the-art approaches.  相似文献   

17.
This paper is devoted to the problem of designing mechanical components of brittle materials such as ceramics using the Weibull probabilistic treatment of brittle strength combined with finite element based design optimization and mathematical programming. The analysis of probability of failure using Weibull statistics is introduced and expressions for design sensitivity analysis are derived. The numerical finite element based implementation is discussed, and a numerical example is used to verify the facilities for analysis and design sensitivity analysis. Finally, a shape optimization example of redesigning a cutting bit from a circular saw blade illustrates a design case where the objective is to reduce the probability of failure.  相似文献   

18.
A nonparametric gradient-less shape optimization approach for finite element stress minimization problems is presented. The shape optimization algorithm is based on optimality criteria, which leads to a robust and fast convergence independent of the number of design variables. Sensitivity information of the objective function and constraints are not required, which results in superior performance and offers the possibility to solve the structural analysis task using fast and reliable industry standard finite element solvers such as ABAQUS, ANSYS, I-DEAS, MARC, NASTRAN or PERMAS. The approach has been successfully extended to complex nonlinear problems including material, boundary and geometric nonlinear behavior. The nonparametric geometry representation creates a complete design space for the optimization problem, which includes all possible solutions for the finite element discretization. The approach is available within the optimization system TOSCA and has been used successfully for real-world optimization problems in industry for several years. The approach is compared to other approaches and the benefits and restrictions are highlighted. Several academic and real-world examples are presented.  相似文献   

19.
The design of gradient coils for magnetic resonance imaging is an optimization task in which a specified distribution of the magnetic field inside a region of interest is generated by choosing an optimal distribution of a current density geometrically restricted to specified non-intersecting design surfaces, thereby defining the preferred coil conductor shapes. Instead of boundary integral type methods, which are widely used to design coils, this paper proposes an optimization method for designing multiple layer gradient coils based on a finite element discretization. The topology of the gradient coil is expressed by a scalar stream function. The distribution of the magnetic field inside the computational domain is calculated using the least-squares finite element method. The first-order sensitivity of the objective function is calculated using an adjoint equation method. The numerical operations needed, in order to obtain an effective optimization procedure, are discussed in detail. In order to illustrate the benefit of the proposed optimization method, example gradient coils located on multiple surfaces are computed and characterised.  相似文献   

20.
This paper presents a systematic numerical technique for performing sensitivity analysis of coupled thermomechanical problem of functionally graded materials (FGMs). General formulations are presented based on finite element model by using the direct method and the adjoint method. In the modeling of spatial variances of material properties, the graded finite element method is employed to conduct the heat transfer analysis and structural analysis and their sensitivity analysis. The design variables are the volume fractions of FGMs constituents and structural shape parameters. The design optimization model is then constructed and solved by the sequential linear programming (SLP). Numerical examples are presented to demonstrate the accuracy and the applicability of the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号