首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Water‐soluble polymers have attracted much interest due to their potential applications in environmental protection engineering to remove harmful pollutants and in biomedicine in the areas of tissue engineering, within‐body implants or other medical devices, artificial organ prostheses, ophthalmology, dentistry, bone repair, and so on. In this review, particular emphasis is given to the ability of water‐soluble polymers with amine, amide, carboxylic acid, hydroxyl and sulfonic acid functional groups to remove metal ions by means of the liquid‐phase polymer‐based retention (LPR) technique that combines the use of water‐soluble polymers and ultrafiltration membranes. The second part is dedicated to showing the potential application of functional water‐soluble polymers and their polymer–metal complexes as biocides for various bacteria. These polymers and polymer–metal complexes show an efficient bactericide activity, especially to Gram‐negative bacteria, Staphylococcus aureus reaching concentrations lower than 4 µg mL?1. This activity depends on polymer size, type of metal ion, contact time and concentration of polymer and metal ion. The discussion reveals that in the case of the LPR process the efficiency of metal ion removal depends strongly on the type of polymer functional group and the feed pH value. In general, two mechanisms of ion entrapment are suggested: complex formation and electrostatic interaction. In the case of the medical use of water‐soluble polymers and their complexes with metal ions, the review documents the unique bactericide properties of the investigated species. The polymer‐metal ion complexes show a reduced genotoxic activity compared with free metal ions. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Through the development of nanotechnology it has been widely studied the morphology and size control in nanopowders synthesis. However, most of these techniques are successful to synthesize nanopowders in a small scale. In this research, a large semi‐industrial scale synthesis method is proposed, named continuous arc discharge in controlled atmosphere (DARC‐AC). Using this technique, it is possible to directly obtain clean nanostructures (low amount of impurities) with more than 90% of particles below 100 nm. In this study, the method utilizes metallic zinc and oxygen as precursors in order to produce ZnO. The ZnO nanopowders were incorporated in a thermoset polymer (epoxy resin) to study their influence on the thermo‐mechanical properties of the matrix. As main results, the mechanical properties of the nanocomposite epoxy/ZnO nanoparticles (ZnO‐NPs) do not differ from the original properties of the epoxy resin. Nevertheless, thermal behavior, conductivity, and diffusivity properties of the nanocomposite are improved. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43631.  相似文献   

4.
Nonionic surfactants are capable of forming nano‐range vesicles upon self‐assembling in an aqueous medium. These vesicles are highly stable, low in toxicity, and cost‐effective. Owing to their ability to solubilize both hydrophilic and hydrophobic substances, they are of great interest for drug solubilization and delivery. This study describes the synthesis and characterization of two new nonionic surfactants and their screening for biocompatibility and drug loading potentials in nano‐scale niosomal vesicles. They were characterized through mass spectroscopy, 1HNMR, and FT‐IR. Their critical micelle concentration (CMC) was investigated using UV–vis spectrophotometry. The biocompatibility study was carried out through blood hemolysis and in vitro cytotoxicity assays. The surfactants have very low CMC values, are highly hemo‐compatible, and were nontoxic when tested against a cell culture. They were able to form nano‐range niosomal vesicles with large variation in their size. Both new surfactants were able to encapsulate increased amounts of the drug, in this case clarithromycin. The chemical nature of the drug remained intact in the niosomal vesicles. The results suggest that these nonionic surfactants could be promising drug delivery vehicles.  相似文献   

5.
A new polymerizable 1,1′‐bi‐2‐naphthol derivative for polymer‐supported catalytic asymmetric synthesis is presented. The synthesis is conducted within a single reaction step, which is a major advantage over other approaches presented in the literature. The ligand‐bearing polymer is prepared through copolymerization with N‐isopropylacrylamide. Preliminary experiments on the utility in catalytic asymmetric alkylation reactions reveal the accessibility and activity of the polymer‐attached catalysts. The stereoselectivity of the reaction is found to be somewhat lower than for reactions performed in the presence of free 1,1′‐bi‐2‐naphthol, and thus requires further optimization. The enantiomeric excess of the reaction products was determined via 1H NMR spectroscopy after chiral derivatization with (R)‐α‐methylbenzyl isocyanate. © 2015 Society of Chemical Industry  相似文献   

6.
We present results on the Forcespinning® (FS) of Polyacrylonitrile (PAN) for mass production of polymer nanofiber membranes as separators for Lithium‐ion batteries (LIBs). Our results presented here show that uniform, highly fibrous mats from PAN produced using Forcespinning®, exhibit improved electrochemical properties such as electrolyte uptake, low interfacial resistance, high oxidation limit, high ionic conductivity, and good cycling performance when used in lithium ion batteries compared to commercial PP separator materials. This article introduces ForceSpinning®, a cost effective technique capable of mass producing high quality fibrous mats, which is completely different technology than the commonly used in‐house centrifugal method. This Forcespinning® technology is thus the beginning of the nano/micro fiber revolution in large scale production for battery separator application. This is the first time to report results on the cycle performance of LIB‐based polymer nanofiber separators made by Forcespinning® technology. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42847.  相似文献   

7.
Carbon fiber (CF)‐embedded acrylonitrile butadiene styrene polymer composites printed on the large‐scale printer at Oak Ridge National Laboratory were investigated by small‐angle neutron scattering to correlate the microstructure of the composites with their mechanical strength. The microstructure of the polymer domains and the alignment of CF were characterized across the interfaces between layers of the hot‐melt extruded material and were compared with CF‐free ABS. The small‐angle neutron scattering data show that the CF‐containing material displays strong anisotropic scatterings suggesting molecular alignment along the printing direction that is not present in the CF‐free ABS. Scattering data analysis across the interfacial layer revealed enhanced molecular alignment along the printing direction near the boundaries and inhomogeneous size distribution of polymer domains upon the addition of CF. We attribute the compromised strength across interfacial layers from CF‐containing material to this inhomogeneous size distribution which prevents effective lateral interaction between layers. POLYM. ENG. SCI., 59:E65–E70, 2019. © 2018 Society of Plastics Engineers  相似文献   

8.
Nanoparticles can experience numerous impacts during storage or after intravenous administration resulting in disassembly and/or drug leakage and affecting their efficiency as drug delivery systems. In this study, this crucial issue was addressed by investigating the stability of amphiphilic poly‐N‐vinylpyrrolidone derivative nanocarriers in blood serum, against destabilizing agents and during long‐term storage. All amphiphilic poly‐N‐vinylpyrrolidone derivative nanoparticles prepared in this study were found to possess sizes less than 150 nm, narrow size distribution, spherical morphology, and a slightly negative surface charge. These nanoparticles could efficiently entrap hydrophobic substances (pyrene and curcumin) while retaining excellent compatibility with red blood cells. Moreover, our studies demonstrate the stability of the nanoparticles during long‐term storage and upon dilution with body liquids enhancing their potential as stable in vivo carriers, which is critically important for intravenous drug delivery applications. All properties were found to strongly depend on the ratio between the hydrophobic and the hydrophilic moiety of the polymers under study. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45637.  相似文献   

9.
The colloidal microstructure of concentrated suspensions containing anionic comb‐polymer‐stabilized magnesium oxide (MgO) particles in water was analyzed by shear rheometry for indications of changes in particle microstructure based on particle size and comb‐polymer usage. As the suspensions were sheared at different rates, jamming in the sheared MgO suspensions was observed as shear stress overshoots. The shear‐induced evolution of the suspension's microstructure was strongly related to the perceived interactions between neighboring MgO particles in the suspension. In the jammed state, interactions are believed to be enhanced by the formation of entanglements between opposing comb‐polymer side‐chains. Steric repulsion between side‐chains was lessened for large particles on account of their diameters, which further enabled side‐chain entanglement during close particle contact under shear. Suspensions with relatively wide particle size distributions (0.5–400 μm) were theorized to form hydrocluster aggregates, while suspensions with narrower particle size distributions (0.5–40 μm) most likely resulted in networked microstructures under the influence of the chain entanglements from the adsorbed comb‐polymer. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40429.  相似文献   

10.
We report here a simple and green procedure for the synthesis of amphiphilic chitosan (CS) derivatives with poly(lactic acid) (PLA) side chains, without the use of high pure lactide, high temperatures, or large amounts of organic solvent. The chemical structure and physical properties of these CS derivatives were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, thermogravimetric analysis, and X‐ray diffraction. The formation and characteristics of polymeric micelles based on these CS derivatives were studied by fluorescence spectroscopy and dynamic light scattering. The critical aggregation concentration in water varied from 0.048 to 0.021 mg/mL, and the mean diameter was in the range 169.8–260.7 nm in aqueous solution at 25°C when the PLA grafting percentage increased from 92 to 132%. Transmission electron microscopy showed that the micelles exhibited a nanospheric morphology within a size range of 60–120 nm. For the resulting micellar aggregates, the drug loading and in vitro drug‐release characteristics were studied with indomethacin as the model drug. We found that such micellar aggregates could be potentially used as nanocarriers for drug delivery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 908‐915, 2013  相似文献   

11.
Novel size‐controllable mPEG‐decorated polymeric microparticles binding optically active ketoprofen were successfully fabricated based on chemoenzymatic synthesis and self‐assembly of amphiphilic random polymer–ketoprofen conjugates with mPEG and (S)‐ketoprofen as pendants. A series of mPEG350‐ or mPEG1000‐functionalized amphiphilic random polymer–ketoprofen conjugates with drug loading capacity from 16.5% to 73.2% were easily prepared by combining enzymatic resolution with radical polymerization and characterized by Fourier Transform Infrared spectroscopy, 1H‐NMR, and gel permeation chromatography. The formation of aggregates from the amphiphilic random polymer–ketoprofen conjugates was investigated by ultraviolet‐visible absorption spectra using pyrene as the guest molecule. Transmission electron microscopy measurement revealed that the self‐assemblies were well dispersed as spherical microparticles. The size of the self‐assemblies could be widely tuned by varying the length of mPEG chains and the content of ketoprofen in the synthetic polymer–ketoprofen conjugates, and a series of mPEG‐decorated (S)‐ketoprofen‐bound polymeric microparticles with average radius from 70 nm to 1.1 μm were obtained. The successful preparation of the microparticles containing (S)‐ketoprofen provided a new strategy for the design and fabrication of optically active drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The synthesis of poly(2‐methoxy‐5‐n‐butoxy‐p‐phenylene vinylene) (MBPPV) via a dehydrochlorination of 2‐methoxy‐5‐n‐butoxy‐α,α′‐dichloro‐p‐xylene is described. The soluble polymer was characterized by elemental analysis, Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), and UV‐visible spectroscopy. The energy gap (Eg) of the polymer was 2.53 eV determined by cyclic voltammogram. Light‐emitting diode (LED) and light‐emitting electrochemical cell (LEC) with the polymer were fabricated. The LED displayed unipolar I‐V dependence with the turn‐on voltage at 4.2 V. I‐V curve of the LEC with poly(ethylene oxide) (PEO, Mw 2 × 104) displayed mirror symmetry with the turn‐on voltage at 2.7 V, but to the device with PEO (Mw 5 × 106) no mirror symmetry was observed, the turn‐on voltages at +2.7 V, −11.5 V. The emission maximum of the polymer in chloroform was at λ = 550 nm, whereas the emission maxima of the LED at 5.2 V and the LEC at 4.8 V were at λ = 566, 569 nm, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2180–2185, 2000  相似文献   

13.
Castor‐acrylated monomer (CAM) NMR spectral assignments were made utilizing one‐ and two‐dimensional NMR techniques. The unique structure of CAM resulted in several novel chemical environments which were observed in the NMR spectra. Previously published vegetable oil and fatty acid ester NMR peak assignments were insufficient for complete identification of NMR peaks. Definitive peak assignments, particularly in the alkyl and alkene regions, are required for evaluation of CAM as a specialty comonomer in the synthesis of latex polymers for use as waterborne‐coating binders. The NMR peak assignments for CAM will allow the subsequent evaluation of the copolymerizability of CAM as well as the determination as to whether unsaturation is preserved during latex polymer synthesis. 1H‐ and 13C‐NMR spectra of CAM are provided with supporting evidence for the peak assignments and discussion of their relevance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1850–1854, 2001  相似文献   

14.
In this investigation, a group of poly(l ‐malic acid acetate‐co‐l ‐lysine ester)s (PMALs) with excellent thermo‐sensitivity and non‐cytotoxicity were prepared by an optimized synthetic route from natural l ‐malic acid and l ‐lysine. The structure and properties of PMALs including monomers were systematically characterized by FTIR, 1H NMR, UV, gel permeation chromatograph, scanning electron microscope, contact angle measurement, cell counting kit assess (CCK‐8), and confocal laser scanning microscopy (CLSM). Three PMALs show a reversible lower critical solution temperature of 8–36 °C depending on their chemical structure. The contact angle measurement revealed a considerable discrepancy in the hydrophilicity/hydrophobicity of PMALs and further influence on their thermo‐sensitivity. The viability of HeLa cells exposed to 0.2–100 μg/mL PMALs solution was found to be in a range 80–103% after 24, 48, and 72 h of incubation, indicating no cytotoxicity. Moreover, a spherical nanocarrier with core‐shell structure was facilely fabricated via the thermo‐sensitivity of PMALs and hydrophobicity of drug. CLSM observations manifested that the hydrophobic‐curcumin‐enwrapped nanocarriers can clearly internalize into the cellular inside. The sustained release of curcumin from nanocarriers in vitro provided a possibility of depressing fast hydrolytic degradation at physiological pH or other side‐effects. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45984.  相似文献   

15.
With the development of alternatives to traditional fossil energy and the rise of wearable technology, flexible energy storage devices have attracted great attention. In this paper, a polyaniline/poly(acrylamide‐sodium acrylate copolymer) hydrogel (PASH) with high flexibility and excellent electrochemical properties for flexible electrodes is fabricated by freeze‐thaw‐shrink treatment of a highly water‐absorptive hydrogel, together with in‐situ polymerization of aniline at a low aniline concentration (0.1 mol L?1). The PASH exhibits a conductivity of 4.05 S m?1 and an elongation at break of 1245%. The freeze‐thaw‐shrink treatment greatly improves the electrochemical performance and stability of the conductive PASH. The area specific capacitance of PASH reaches 849 mF cm?2 and the capacitance maintains 89% after 1000 galvanostatic charge–discharge cycles. All the raw materials are conventional industrialized materials and no additional templating agent is needed during the entire synthesis process. This study provides a cost‐efficient approach for the fabrication of conductive polymer hydrogels, which has a broad application prospect in flexible energy storage electronic devices.  相似文献   

16.
In this contribution, the facile synthesis of two new polymer‐supported 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) catalysts and their application in the catalytic oxidation of alcohols to carbonyl compounds are described. For attachment of the TEMPO group to the polymer an isocyanate functionalized polymer is chosen. This new approach facilitates the synthesis in comparison with previously existing methods which generally require deprotonation of TEMPO prior to reaction with the polymer. Following this approach, polyurethane (PU)‐ and polystyrene (PS)‐based TEMPO catalysts are prepared in a one‐step reaction from commercially available compounds. Both polymer‐supported catalysts showed promising yields for a variety of substrates using inorganic and/or organic co‐oxidants in biphasic and/or monophasic systems. The recyclability of the corresponding catalysts was studied in repetitive batch experiments using filtration or distillation depending on the support type. Furthermore, application of the homogeneous polyurethane‐supported TEMPO for the selective oxidation of benzyl alcohol in a continously operated membrane reactor is demonstrated.  相似文献   

17.
The polystyrene‐block‐polyacrylic acid (PSt‐b‐PAA) copolymer is obtained through the reversible addition‐fragmentation chain transfer polymerization (RAFT). Then the cobalt (Co) nano‐particles are synthesized by loading the Co2+ salt into the polymer and reducing them. Polymer–matrix composites with an average particle size of 10 nm have been formed by a simple technique. The technique exploits the dispersed phase of the polymer to form numerous identical nanoreactors. In this approach, nanoparticles are rigidly attached to the support surface to prevent their agglomeration. FT‐IR and TEM analysis of these polymer–matrix composites revealed that nano‐structures are formed and the shape can be controlled. Vibrating sample magnetometer is also used to study the magnetic property of the materials at room temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A water‐soluble statistical poly(N‐acryloylmorpholine‐coN‐acryloxysuccinimide) [poly(NAM/NAS)] copolymer was studied for polymer–oligonucleotide (ODN) conjugate elaboration and for further use in diagnostic applications. Three different copolymers were first prepared by free‐radical solution polymerization with different N‐acryloylmorpholine (NAM) and N‐acryloxysuccinimide (NAS) molar ratios (80/20, 70/30, and 60/40). Their number‐average molecular weights ranged from 98,000 to 120,000 g/mol, as determined by aqueous size exclusion chromatography with an online light‐scattering detector. Then, polymer–ODN conjugates were obtained via a strategy consisting of the direct synthesis of ODNs onto polymer chains previously grafted onto a controlled pore glass support. Before the grafting of the polymer onto the solid support, a preliminary step was performed to bind a nucleotide starter along the polymer chain (via the reactive NAS units) to initiate automated DNA synthesis. To multiply the number of ODNs growing from starters, a branched phosphoramidite synthon [bearing two O‐dimethoxytrityl groups] was introduced at the first step of ODN elongation as a short sequence of four branched synthons alternated with three thymidine residues. Conjugates were assessed in a DNA sandwich hybridization test developed for hepatitis B virus detection. Sensitivity limits were evaluated and compared to those obtained with an other polymer, poly(maleic anhydride‐alt‐methyl vinyl ether) [poly(MA/MVE)]. A sensitivity limit of 2.6 × 107 DNA copies/mL was reached with the poly(MA/MVE)–ODN conjugate at the capture phase and with the poly(NAM/NAS)–branched ODN conjugate at the detection phase of the test. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3784–3795, 2004  相似文献   

19.
20.
Current projects focusing on the energy transition in traffic will rely on a high‐level technology mix for their commissioning. One of those technologies is the Fischer‐Tropsch synthesis (FTS) that converts synthesis gas into hydrocarbons of different chain lengths. A microstructured packed‐bed reactor for low‐temperature FTS is tested towards its versatility for biomass‐based syngas with a high inert gas dilution. Investigations include overall productivity, conversion, and product selectivity. A 60‐times larger pilot‐scale reactor is further tested. Evaporation cooling is introduced which allows to increase the available energy extraction from the system. From that scale on, an autothermal operation at elevated conversion levels is applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号