首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which 7,12-dimethylbenz[a]anthracene (DMBA) produces cytotoxicity in lymphocytes was investigated in these studies using the murine A20.1 B cell lymphoma. Results show that in vitro exposure of these cells to 10-30 microM DMBA for 4 hr produced an increase in intracellular Ca2+, DNA fragmentation, and subsequent cell death. Elevation of Ca2+ and DNA fragmentation induced by DMBA were greatly pronounced when the A20.1 cells were exposed at high cell density (10(7) cells/ml). DMBA-induced DNA fragmentation and cell death were inhibited by coexposure of A20.1 cells to a calcium chelator (EDTA), a general nuclease and polymerase inhibitor (aurintricarboxylic acid), and a protein synthesis inhibitor (cycloheximide). These agents have been previously shown to inhibit apoptosis in lymphocytes and other cells exposed to chemical agents. We also found that cyclosporin A, an inhibitor of Ca(2+)-dependent pathways of T and B cell activation, prevented apoptosis in the A20.1 cell line. These results demonstrate that DMBA induces programmed cell death (apoptosis) in the A20.1 murine B cell lymphoma by Ca(2+)-dependent pathways. The increased sensitivity of A20.1 at high cell density to Ca2+ elevation and DNA fragmentation suggests that cell to cell interactions may also be important in this process.  相似文献   

2.
The activation of the caspase family of cysteine proteases is a key step in the implementation of apoptotic cell death leading to further downstream effects such as DNA fragmentation. In cultured tumor cells, caspase activity appears only when cells are undergoing apoptosis. Here we show that human and murine T lymphocytes acquire high intracellular activities of cell death-specific caspases upon activation by mitogens and IL-2 without evidence that apoptosis is proceeding. The highest activity is seen when cells are mitogen activated for 3 days. On a per cell basis, caspase activity in activated T cells is much higher than in tumor cells induced to undergo apoptosis. In the presence of exogenously added IL-2 cells stay alive and maintain a high level of caspase activity while IL-2 withdrawal results in cell death and decline of caspase activity. Caspase activity can also be measured in extracts from spleen and lymph nodes from mice injected with superantigen. While in tumor cell lines caspase activity correlates with cleavage of poly(ADP)-ribose polymerase (PARP) and DNA fragmentation, in activated T cells cleavage products of cellular PARP can be detected whereas DNA fragmenting activity appears only upon IL-2 withdrawal which coincides with cell death. These data show that caspase activation in intact cells does not necessarily lead to cell death and argue for a checkpoint in the apoptotic pathway downstream of caspases. Furthermore, they provide a molecular correlate for the high susceptibility of activated T cells for apoptosis.  相似文献   

3.
Monocytic-like leukemia U-937 cells rapidly undergo morphological changes and DNA fragmentation that is typical of apoptosis following treatment with DNA topoisomerase I inhibitor [20-S-camptothecin lactone (CPT)]. The tripeptide derivative benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone blocks Asp-Glu-Val-Asp-ase (DEVDase) activity and prevents the occurrence of high molecular weight and oligonucleosome-sized DNA fragments associated with apoptosis in CPT-treated cells. In contrast, N-tosyl-L-phenylalanylchloromethyl ketone (TPCK) does not prevent DEVDase activity and high molecular weight DNA fragmentation but completely abrogates the appearance of oligonucleosome-sized DNA fragmentation. These results suggest that caspase 3-like activities are involved with high molecular weight DNA fragmentation pathway, whereas TPCK-sensitive activities are involved in oligonucleosome-sized DNA fragmentation pathway in CPT-treated cells. Electron micrographs reveal that caspase inhibition by benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone also abrogates the typical morphological changes associated with apoptosis, whereas TPCK does not delay these morphological changes that are typical of apoptosis. Caspase inhibition slows passage of the cells through G2 and causes a transient accumulation of these cells at the G0/G1 phase of the cell cycle following CPT treatment. In a cell-free system, when purified nuclei are incubated with apoptotic cytosolic extracts obtained from CPT-treated U-937 cells, TPCK causes a similar effect in abrogating the oligonucleosome-sized DNA fragmentation but does not affect DEVDase activity. Addition of either benzyloxycarbonyl-Val-Ala-Asp-free carboxyl group or acetyl-Asp-Glu-Val-Asp-aldehyde completely inhibits DEVDase activity in these extracts. However, acetyl-Asp-Glu-Val-Asp-aldehyde does not affect the occurrence of oligonucleosome-sized DNA fragmentation in the cell-free system, whereas the benzyloxycarbonyl derivatives benzyloxycarbonyl-Val-Ala-Asp-free carboxyl group, benzyloxycarbonyl-Val-Ala-free hydroxyl group, benzyloxycarbonyl-Val-free hydroxyl group, and benzyloxycarbonyl hydrazide abolish it markedly. Taken together, these observations show the pivotal role of DEVDase activity in triggering the apoptotic process and high molecular weight DNA fragmentation, whereas TPCK- and benzyloxycarbonyl-sensitive activities are involved in the oligonucleosome-sized DNA fragmentation pathway induced by CPT.  相似文献   

4.
BACKGROUND: A number of enzymatic techniques have recently been developed to detect DNA fragmentation in apoptosis at the cellular level. However, since DNA fragmentation also occurs in cellular necrosis, we studied to which extent the use of DNA polymerase (nick translation) or terminal transferase (tailing) allows the differentiation between internucleosomal DNA degradation, typical for apoptosis, and the more random DNA destruction in necrosis. EXPERIMENTAL DESIGN: We compared these techniques on in vitro and in vivo models for apoptotic or necrotic cell death. Apoptosis of thymocytes in vitro was induced by gamma-irradiation, necrosis by the cytotoxic action of antibody and complement. Cell death in vivo was examined on paraffin-embedded tissue material from animals with autoimmune encephalomyelitis that served as a model for apoptosis, or in kainic acid-induced nerve cell degeneration as a model for necrosis. RESULTS: DNA fragmentation was visualized by the incorporation of labeled nucleotides into the nuclei of affected cells utilizing tailing or nick translation techniques. In the early stages of cell degeneration in vitro, cells undergoing apoptosis were preferentially labeled by tailing, whereas necrotic cells were identified by nick translation. Similarly, early stages of necrosis in vivo were preferentially detected by nick translation, whereas tailing was slightly more sensitive for the detection of apoptosis. Results obtained with these enzymatic techniques were in accord with the assessment of cell death by morphologic criteria. Both techniques could be applied in tissue samples even after prolonged fixation in paraformaldehyde if the sections were pretreated with proteinase K digestion. CONCLUSIONS: Our studies show that both in situ nick translation and in situ tailing are useful in detecting DNA fragmentation in cell suspensions and tissue sections. These techniques may help to define the molecular mechanisms leading to cell death in experimental conditions and eventually in human tissue.  相似文献   

5.
This study was undertaken to examine the role of proteases in etoposide-induced apoptosis of human leukemia HL-60 cells. We found the potent activity to produce internucleosomal DNA fragmentation in a 150 000 g supernatant of cell lysate which was prepared from etoposide-treated HL-60 cells undergoing apoptosis. This nuclear-DNA fragmenting activity could be detected when the supernatant was incubated with isolated nuclei under Mg2+-dependent conditions. On the other hand, we could not detect such activity in the supernatant of cell lysate from non-treated HL-60 cells. Treatment of the supernatant with a serine protease inhibitor, N-tosyl-L-phenylala-nylchloromethyl ketone (TPCK), abolished the DNA fragmenting activity. An inhibitor of interleukin 1-beta-converting enzyme (ICE), Z-Val-Ala-Asp-fluoromethyl ketone (VAD-FMK), had no effect on this DNA fragmenting activity in vitro. However, when the cells were incubated with etoposide in the presence of VAD-FMK, the formation of TPCK-sensitive DNA fragmenting activity was blocked. Our data indicate that serine and ICE-like proteases may be involved in etoposide-induced apoptosis at the different stages, and especially a serine protease may be closely associated with the final step for induction of internucleosomal DNA fragmentation during apoptosis in HL-60 cells.  相似文献   

6.
During apoptosis, DNA fragmentation and intracellular acidification occur concurrently. Previous results have shown that intracellular acidification is not required for DNA fragmentation, while the alternative, that acidification is a consequence of DNA fragmentation was analyzed here. To obviate the requirement of any nuclear function in acidification, apoptosis was induced by staurosporine in cytoplasts made from the breast tumor cell line MDA-MB-468. Both cells and cytoplasts demonstrated externalization of phosphatidylserine that was prevented by the pan-caspase inhibitor zVAD-fluoromethylketone or by expression of Bcl-2. Intracellular acidification was observed in both cells and cytoplasts and this was also inhibited by both zVAD-fluoromethylketone and Bcl-2. These results show that intracellular acidification and DNA fragmentation are independent consequences of caspase action during apoptosis.  相似文献   

7.
Apoptotic cell death induced by cross-linking Fas receptor (FasR/CD95) has been investigated in human acute myelogenous leukemia (AML) cells. FasR-mediated growth inhibition and DNA fragmentation could be induced in certain cases of AML. Interestingly, when DNA synthesis and G1 -> S transition in the cell cycle were enhanced by interleukin-3 or granulocyte-macrophage colony-stimulating factor, Fas-insensitive blast cells acquired cellular susceptibility toward FasR-mediated growth inhibition. To further evaluate an association between the Fas-R-mediated action and a specific phase of the cell cycle, a FasR+ leukemic cell line, MML-1, was established from a patient with AML. The morphologic feature of dying cells and DNA fragmentation indicated that FasR cross-linking induced apoptotic cell death in MML-1 cells. Cell cycle arrest in G1A phase with the treatment of phorbol 12-myristate 13-acetate or thymidine rendered MML-1 cells resistant to FasR-mediated apoptosis without downregulation of surface FasR expression. However, S-phase arrest with 5-fluorouracil could neither enhance nor inhibit FasR-mediated apoptosis. Simultaneous DNA/RNA quantification analysis revealed the selective loss of cells in G1B compartment, accompanied by the increase of apoptotic nuclei in sub-G1 fraction. These findings suggested that FasR-mediated apoptotic signals could be transduced into cells in G1B compartment and G1A -> G1B transition might augment the induction of FasR-mediated apoptosis.  相似文献   

8.
BACKGROUND: Apoptosis is a morphologically distinctive form of programmed cell death/cell suicide in which genomic DNA degradation/fragmentation and variegated dense chromatin aggregates are characteristic hallmarks that have never been demonstrated in mitotic cells. Perceptions of mutual exclusivity between apoptosis and mitosis imply that M-phase cells cannot be apoptotic. However, in the present study we show apoptotic morphologies in M-phase cells after an acute oxidative stress and endonuclease digestion. METHODS: Degradation of genomic DNA in human Chang liver cells (American Type Culture Collection, ATCC CCL13) was demonstrated by flow cytometric cell-by-cell evaluation of (a) propidium iodide intercalative binding to DNA and (b) terminal deoxynucleotidyl transferase (TdT)-mediated 3'OH nick end labeling (TUNEL) of fragmented DNA. Oxidative stress was imposed by a 30-min prepulse with 200 microM vanadyl(4), which produces hydroxyl free radicals (OH*), the most reactive of the free radical species. Oxidative stress in the cells was demonstrated by evaluating glutathione-S-transferase (GST)-mediated monochlorobimane-glutathione adduct fluorescence for glutathione content, the main reducing agent of a cell, and methylene blue redox metachromasia, which is a deep color when oxidized and colorless when reduced. Cells with DNA fragmentation were highlighted by TUNEL. Apoptotic morphologies were visualized by staining with Giemsa and neutral red dyes and by DNA-propidium iodide binding to chromatin. Direct endonuclease induction of apoptotic morphologies in permeabilized M-phase cells was produced by 1 hr incubation (37 degrees C) with 16 units/ml of micrococcal nuclease. RESULTS: The genomic DNA of proliferative cells, namely in G2/M phase of the cell cycle, was degraded by vanadyl(4) prepulsing and by micrococcal nuclease digestion, concomitantly with DNA fragmentation shown by TUNEL. Cytological profiles showed GSH depletion and M-phase cells with particularly high oxidative reactivity indicated by methylene blue redox metachromasia. DNA fragmentation in M-phase cells was highlighted by TUNEL. Characteristic apoptotic condensations, ranging from single-ball condensations to "pulverized" aggregates of a mitotic catastrophe, buddings, and "apoptotic bodies," were found in prophase, metaphase, anaphase, and telophase mitotic cells. The observed separation of condensed chromatin aggregates from the main chromosome mass in prophase and metaphase cells could explain micronuclei, linking it with apoptosis. Direct endonuclease digestion readily produced apoptotic morphologies in interphase and in M-phase cells. CONCLUSION: Apoptotic morphologies in M-phase cells can be induced indirectly via oxidative stress or directly via endonuclease activity, which has long been established as a pervading hallmark of apoptosis.  相似文献   

9.
Apoptosis is a genetically regulated form of cell death. Individual cells show condensed nuclear chromatin and cytoplasm, and biochemical analysis reveals fragmentation of the DNA. Ensuing cellular components, apoptotic bodies, are removed by macrophages or neighboring cells. Genes involved in the regulation of apoptosis as well as stimuli and signal transduction systems, are only beginning to be understood in the retina. Therefore, we developed a new in vivo model system for the investigation of events leading to apoptosis in the retina and the pigment epithelium. We induced apoptosis in retinal photoreceptors and the pigment epithelium of albino rats by exposure to 3000 lux of diffuse, cool white fluorescent light for short time periods of up to 120 minutes. Animals were killed at different time intervals during and after light exposure. The eyes were enucleated and the lower central retina was processed for light- and electron microscopy. DNA fragmentation was analysed in situ by TdT-mediated dUTP nick-end labeling (TUNEL) or by gel electrophoresis of total retinal DNA. We observed that the timing of apoptosis in the photoreceptors and pigment epithelium was remarkably different, the pigment epithelium showing a distinct delay of several hours before the onset of apoptosis. In photoreceptors, apoptosis was induced within 90 minutes of light exposure, with the morphological appearance of apoptosis preceding the fragmentation of DNA. In the pigment epithelium, the morphological appearance of apoptosis and DNA fragmentation were coincident. Different regulative mechanisms may lead to apoptotic cell death in the retinal photoreceptors and pigment epithelium. This in vivo model system will allow measurement of dose-responses, a potential spectral dependence and the molecular background of apoptotic mechanisms in the retina.  相似文献   

10.
Taxol-induced polymerization of tubulin into stable microtubules and cell cycle metaphase arrest have been demonstrated to result in internucleosomal DNA fragmentation and morphological features of apoptosis in human leukemia cells. Recent studies have also shown that Taxol-induced apoptosis, but not Taxol-induced microtubular bundling or mitotic arrest, is significantly inhibited in cells that overexpress the bcl-2 gene product p26BCL-2. In the present studies we examined the effects of several modulators of activities of protein kinases on Taxol-induced DNA fragmentation and apoptosis in human pre-B leukemia 697 cells transfected with the cDNA of the bcl-2 gene and expressing high intracellular levels of p26BCL-2 (697/BCL-2 cells). Treatment with 0.1-1.0 microM MTaxol for 24 h produced prolonged mitotic arrest of control 697/neo cells, which had been transfected with the neomycin resistance gene. This resulted in apoptosis-associated large DNA fragments ranging between 5 and 200 kb and internucleosomal DNA fragmentation. Cotreatment with the phorbol ester phorbol dibutyrate (PdBU) significantly reduced Taxol-induced internucleosomal and large DNA fragmentation and inhibited apoptosis of 697/neo cells. In contrast, a combined exposure to Taxol and staurosporine (ST; 5 or 50 ng/ml), a potent inhibitor of protein kinase C and other kinases, significantly increased DNA fragmentation and apoptosis of 697/neo cells. Additionally, in 697/BCL-2 cells, ST partially overcame the suppressive effects of high p26BCL-2 levels on Taxol-induced apoptosis. Cotreatment with the tyrosine kinase inhibitor Genistein (30 microM) markedly inhibited Taxol-induced DNA fragmentation and apoptosis of 697/neo cells. However, it is noteworthy that the modulations of Taxol-induced DNA fragmentation and apoptosis by PdBU, ST, and Genistein occurred without significant effects on Taxol-mediated mitotic arrest of 697/neo cells. These agents also did not affect intracellular p26BCL-2 levels in 697/neo or 697/BCL-2 cells. These findings indicate that Taxol-induced apoptosis can be modulated by agents that affect the activities of protein kinases, and these effects are not mediated by modulations of Taxol-induced mitotic arrest or by alterations of intracellular p26BCL-2 levels.  相似文献   

11.
Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme responsible for DNA strand breaks, has been recently suggested to be crucial for apoptosis induced by a number chemotherapeutic drugs. In this study, we demonstrated that the PARP activity could be evidently elevated with a peak at 6 h when HL-60 cells were treated with a new anticancer drug GL331. Coincident with the peak of PARP activity, an apparent DNA fragmentation and apoptotic morphology were observed in cells treated with GL331. The subsequent apoptotic DNA fragmentation induced by GL331 could be completely blocked by transfecting cells with anti-sense PARP retroviral vector or by treating cells with PARP inhibitor, 3-aminobenzamide (3-AB). This blocking effect thus suggests that activation of PARP was critically involved in GL331-induced apoptosis. The fact that Bcl-2 has been found to antagonize cell death induced by a wide variety of agents, accounts for why we examined whether if Bcl-2 could antagonize GL331 effects. Interestingly, ectopic overexpression of Bcl-2 in either HL-60 or U937 cells caused in resistance towards GL331-elicited DNA fragmentation and cytotoxic effect. Additionally, Bcl-2 also attenuated the poly(ADP-ribosyl)ation of PARP itself as well as Histone H1 at the early period of drug treatment. However, Bcl-2 did not influence the extent of DNA strand breaks induced by GL331 in either control or Bcl-2-overexpressing cells. In addition, analysis of basal PARP activity in control and several Bcl-2 overexpressing clones revealed that Bcl-2 down-regulated PARP activity under the condition without DNA damages. Above findings suggest that poly(ADP-ribosyl)ation of nuclear targets is important for apoptosis induced by DNA-reactive anticancer drugs.  相似文献   

12.
We found dramatic changes in leukemia U937 cells treated with 5'-deoxy-5'-methylthioadenosine (MTA), a potent inhibitor of protein carboxylmethyltransferase (protein methylase II). Initiation of cell death was observed by 1 day after MTA treatment, and it was induced in a dose- and time-dependent manner. However, cell viability measured by trypan blue exclusion was not consistent with the actual percentage of cell death. These results indirectly indicated that the type of cell death is apoptosis rather than necrosis. Nuclear fragmentation and DNA condensation of MTA-treated U937 cells were analyzed by both fluorescent and electron microscopy. MTA-treated cells first began to arrest in the M phase of the cell cycle, and they then exhibited a mitotic-like nuclear fragmentation process with partially membraneless chromatin. Furthermore, agarose gel electrophoresis of DNA extracted from cells treated with MTA showed DNA laddering with production of fragments of approximately 200 bp multiples. These studies indicated that cell death induced by MTA has the characteristics of apoptosis, although nuclear fragmentation is atypical. It seems likely that the process of apoptosis in U937 cells induced by MTA correlates with incomplete assembly of the nuclear envelope, since MTA itself could inhibit the carboxylmethylation of nuclear lamin B and delayed incorporation of lamin B into the nuclear envelope.  相似文献   

13.
Mycoplasma infection may lead to various pathologies in a broad range of hosts. It has been shown that Mycoplasma may trigger cell death in cell cultures; however, the mechanism remains unknown. In the present paper we show that Mycoplasma infection of different lymphocyte and epithelial tumour cell lines leads to the inhibition of proliferation, and increased cell death, accompanied by DNA fragmentation and the morphological features of apoptosis. We also showed that this infection leads to an increased sensitivity of cells to various inducers of apoptosis targeting different signalling pathways. Finally, we show that increased apoptosis is associated with overexpression of an endonuclease produced by Mycoplasma. This endonuclease is recovered in the nuclear fraction of host cells, introduces mostly DSB and is active at neutral pH in the presence of divalent cations. Activation of this endonuclease is connected with limited proteolysis, which may be reproduced in vitro by snake venom serine proteinase.  相似文献   

14.
Apoptosis is a form of programmed cell death that is involved in cell turnover. In the present study we show that the tricyclic antidepressants (TCAS) imipramine, clomipramine and citalopram induce apoptosis in human peripheral lymphocytes. Lymphocytes were incubated with these three drugs for up to 48 h. Apoptosis was characterized by typical nucleosomal DNA fragmentation on agarose gel, as well as quantitated using 4'-6-diamidino-2-phenylindole (DAPI) staining and 3'-OH end-labeling of fragmented DNA at the single cell level. Apoptosis induced by TCAs was shown to be dose-dependent and could be detected after a 24 h incubation. The optimal concentrations of the three TCAs found to induce apoptosis were 50 microM imipramine, 20 microM clomipramine and 180 microM citalopram. Furthermore, immunofluorescence and three-color flow cytometry were used to identify the phenotype of apoptotic cells. TCA-induced apoptosis was shown to involve exclusively T-lymphocytes. Cytotoxic T-lymphocytes were more prone to undergo apoptosis than were T-helper cells. In conclusion, the present investigation clearly demonstrates that TCAs exert cell biological effects upon human T-lymphocytes. Further studies are required to determine the possible clinical relevance of these findings.  相似文献   

15.
Spermatogenic cell degeneration in the mature mammalian testis occurs both spontaneously during normal spermatogenesis and in response to cytotoxic agents. Mitomycin C (MC) is an antibiotic that affects DNA synthesis. In the present study, we examined the induction of mouse spermatogenic cell apoptosis by MC, using TdT-mediated dUTP-biotin nick end labeling (TUNEL) to detect high levels of DNA fragmentation in situ, transmission electron microscopy (TEM) to observe nuclear chromatin condensation, and molecular methods to detect DNA ladders. This study shows that in the testis of MC-treated mice: (i) apoptotic cell death with fragmentation of nuclear DNA is induced by MC dose-dependently, (ii) apoptotic cell death is most commonly found in the spermatogonia and less frequently in spermatocytes, and (iii) apoptotic cell death induced by MC is not specific for the seminiferous stage of the tubules. The present study suggests that the spermatogenic cell apoptosis induced by MC might be involved in its testicular toxicity.  相似文献   

16.
DFF45 is a subunit of the DNA fragmentation factor (DFF) that is cleaved by caspase-3 during apoptosis. However, the mechanism by which DFF45 regulates apoptotic cell death remains poorly understood. Here we report the identification and characterization of two mammalian genes, CIDE-A and CIDE-B, encoding highly related proteins with homology to the N-terminal region of DFF45. CIDE-A and CIDE-B were found to activate apoptosis in mammalian cells, which was inhibited by DFF45 but not by caspase inhibitors. Expression of CIDE-A induced DNA fragmentation in 293T cells, which was inhibited by DFF45, further suggesting that DFF45 inhibits the apoptotic activities of CIDEs. In addition to mammalian CIDE-A and CIDE-B, we identified DREP-1, a Drosophila melanogaster homolog of DFF45 that could inhibit CIDE-A-mediated apoptosis. Mutant analysis revealed that the C-terminal region of CIDE-A was necessary and sufficient for killing whereas the region with homology to DFF45 located in the N-terminus was required for DFF45 to inhibit CIDE-A-induced apoptosis. CD95/Fas-mediated apoptosis was enhanced by CIDEs but inhibited by DFF45. These studies suggest that DFF45 is evolutionarily conserved and implicate CIDEs as DFF45-inhibitable effectors that promote cell death and DNA fragmentation.  相似文献   

17.
18.
Apoptotic cell changes occurring under certain developmental, physiological, and pathological conditions have been of increasing interest during recent years. Due to occasional difficulties in detecting apoptosis in routinely stained sections, various methods have been developed to facilitate tissue examination. Fragmentation of DNA during the process of apoptosis is a prerequisite for detection in the in situ end-labeling (ISEL) procedure. It is yet unclear whether other mechanisms of cell change that induce DNA fragmentation such as necrosis and postmortem autolysis also show positive staining with the ISEL technique. To investigate whether the ISEL assay visualizes autolytic DNA changes along with apoptotic DNA fragmentation, we tested the technique on brain tissue of mice after different time intervals (0, 6, 12, 24, 48, 72 h) of postmortem delay (PMD) and at 2 different temperatures of postmortem storage (4 degrees C and room temperature (RT)). Our semiquantitative results show that up to 24 h of PMD no prominent difference in labeling is observable at both temperatures. After 48 and 72 h of PMD at RT clusters of labeled cells begin to appear. Clusters of stained cells should therefore not be considered as apoptosis when using the ISEL assay.  相似文献   

19.
20.
Interleukin 1beta-converting enzyme-like proteases (caspases) are crucial components of cell death pathways. Among the caspases identified, caspase-3 stands out because it is commonly activated by numerous death signals and cleaves a variety of important cellular proteins. Studies in caspase-3 knock-out mice have shown that this protease is essential for brain development. To investigate the requirement for caspase-3 in apoptosis, we took advantage of the MCF-7 breast carcinoma cell line, which we show here has lost caspase-3 owing to a 47-base pair deletion within exon 3 of the CASP-3 gene. This deletion results in the skipping of exon 3 during pre-mRNA splicing, thereby abrogating translation of the CASP-3 mRNA. Although MCF-7 cells were still sensitive to tumor necrosis factor (TNF)- or staurosporine-induced apoptosis, no DNA fragmentation was observed. In addition, MCF-7 cells undergoing cell death did not display some of the distinct morphological features typical of apoptotic cells such as shrinkage and blebbing. Introduction of the CASP-3 gene into MCF-7 cells resulted in DNA fragmentation and cellular blebbing following TNF treatment. These results indicate that although caspase-3 is not essential for TNF- or staurosporine-induced apoptosis, it is required for DNA fragmentation and some of the typical morphological changes of cells undergoing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号