首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Recently several attempts have been made to combine calcium phosphates, such as β-tricalcium phosphate (β-TCP) and, most of all, hydroxyapatite (HA), with bioactive glasses of different composition, in order to develop composites with improved biological and mechanical performance. Unfortunately, the production of such systems usually implies a high-temperature treatment (up to 1300 °C), which may result in several drawbacks, including crystallization of the original glass, decomposition of the calcium phosphate phase and/or reactions between the constituent phases, with non-trivial consequences in terms of microstructure, bioactivity and mechanical properties of the final samples. In the present contribution, novel binary composites have been obtained by sintering a bioactive glass, characterized by a low tendency to crystallize, with the addition of HA or β-TCP as the second phase. In particular, the composites have been treated at a relatively low temperature (818 °C and 830 °C, depending on the sample), thus preserving the amorphous structure of the glass and minimizing the interaction between the constituent phases. The effects of the glass composition, calcium phosphate nature and processing conditions on the composite microstructure, mechanical properties and in vitro bioactivity have been systematically discussed. To conclude, a feasibility study to obtain scaffolds for bone tissue regeneration has been proposed.  相似文献   

2.
Polycaprolactone (PCL) composite films containing 5 wt.% bioactive glass (BG) particles of different sizes (6 μm, 250 nm, < 100 nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass® particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) methods. In vitro bioactivity of the PCL/BG composite films was evaluated through immersion in the simulated body fluid (SBF). The films were analyzed by FE-SEM, energy dispersive spectrometry (EDS), XRD, and atomic force microscopy (AFM). The mechanical properties of highly-porous PCL/BG composites were examined on cylindrical specimens under quasi-static compression load. It was found that partial crystallization of amorphous BG particles during a prolonged mechanical milling occurred and calcium silicate (CaSiO3) and sodium calcium silicate (Na2CaSiO4) phases were formed. The introduction of submicron BG particles (250 nm) was shown to improve the bioactivity of PCL films. In contrast to BG microparticles, the submicron BG particles were distributed on the film surfaces, providing a high surface exposure to SBF with an improved nanotopography. A notable increase in the stiffness and elastic modulus of the composite was also obtained. As compared to submicron BG particles, lower bioactivity and elastic modulus were acquired for PCL/BG nanoparticles. It was also shown that in spite of high specific surface area of the nanoparticles, partial crystallization during mechanical milling and agglomeration of the nanoparticles during processing decrease the bioactivity, hydrophilicity and mechanical response of the BG-reinforced PCL composites.  相似文献   

3.
Biocompatibility and bioactivity of polymer matrix composites containing titanium dioxide (TiO2) nanoparticles were investigated. The solvent casting method was used to prepare poly (d,l-lactic acid) (PDLLA) films with 0 and 20 wt.% TiO2 nanoparticles and with 20 wt.% TiO2 mixed with 5 wt.% micrometre-sized (< 5 μm) Bioglass® particles. The samples were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy Dispersive X-ray (EDX) analyses. A Zygo® light interferometer was used to examine the surface roughness of the samples. The bioactivity and the surface reactivity of the materials were determined by investigating the formation of hydroxyapatite (HA) on the surface of samples upon immersion in simulated body fluid (SBF) for up to 28 days. Heterogeneous distributed HA crystals were found on composite films containing TiO2 after 21 days exposure to SBF. Cell cytotoxicity and viability were determined by using live/dead and MTS assay on osteoblast-like MG-63 cells. The PDLLA films containing different concentrations of TiO2 and Bioglass® particulate inclusions showed no effect on cell viability in live/dead assay after incubation period of 7 days. All three groups of samples demonstrated significant increase in relative metabolic activity in MTS assay after 7 days incubation (while a slower proliferation rate was obtained for cells on the PDLLA film containing both TiO2 and Bioglass® compared to the Thermanox® control). The bioactive behaviour of the nanocomposites may make them attractive materials for fabrication of tissue engineering scaffolds.  相似文献   

4.
《Composites Part A》2007,38(1):114-123
In order to improve fracture toughness, carbon nanofibers (CNF) were used as reinforcement for hydroxyapatite (HA) composites. The powder mixture of CNF/HA were obtained with ball-milling technique. CNF/HA composites were sintered by hot-pressing with 7.81 and 15.6 MPa sintering pressure. Maximum sintering pressure was 1200 °C. Mechanical and physiological bio-compatibility were evaluated by four-point bending tests, indentation tests and immersion tests in simulated body fluid (SBF). The strength values of 10 vol.% CNF/HA composites sintered at 15.6 MPa is 90 MPa, which is within those of cortical bone. The fracture toughness values for CNF/HA composites are around 1.6 times higher than those obtained for HA. Equal bioactivity are obtained for CNF/HA composites.  相似文献   

5.
This work describes a facile method to obtain highly bioactive crystalline powders of the SiO2–CaO–Na2O–P2O5 system using a simple route: solid state reaction. Success in obtaining the highly bioactive crystal phase of interest (sodium calcium silicate Na2Ca2Si3O9 containing phosphorus) involves heating the starting reactant powder mixture under an oxidizing atmosphere for 480 min in the temperature range 950–1000 °C. Despite a significant loss of phosphorus at heat treatment temperatures above 950 °C, the resulting Na2Ca2Si3O9 crystal phase is thermally stable up to 1100 °C. Longer treatment times favor the formation of a secondary phase (sodium calcium phosphate NaCaPO4), which, according to recent studies, further increases the bioactivity of a similar material. Finally, in vitro bioactivity tests in acellular simulated body fluid (SBF) of a powder containing only the Na2Ca2Si3O9 phase has shown behavior similar to that of Biosilicate® — an ~ 99.5% crystalline glass–ceramic whose outstanding characteristics of interaction with living tissue have already been reported in the literature.  相似文献   

6.
Bioglass®45S5 was co-sintered with hydroxyapatite at 1200 °C. When small amounts (< 5 wt.%) of Bioglass®45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to β-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass®45S5 was used it resulted in the formation of Ca5(PO4)2SiO4 and Na3Ca6(PO4)5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite–Bioglass®45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L2,3-edge and calcium (Ca) K-edge XANES.Si L2,3-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination.Using P L2,3-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na3Ca6(PO4)5 in a silicate matrix indicating that it is more soluble compared to the other compositions.  相似文献   

7.
This study investigated the effect of the addition of sol–gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol–gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89 ± 11 MPa to 383 ± 50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15–19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL.  相似文献   

8.
Hydroxyapatite (HA) reinforced Poly(vinyl alcohol) (PVA) hydrogel composites has been proposed as a promising biomaterial to replace diseased or damaged articular cartilage. Here, PVA/in-situ produced HA hydrogels with 0, 3 and 7.5 wt.% of HA content were obtained by freezing/thawing technique. Thermal, structural and mechanical characterizations were carried out. SEM micrographs revealed that HA was homogeneously distributed in PVA until 3 wt.% whereas partial agglomeration was observed for higher contents (7.5 wt.%). No significant changes were observed in the glass transition temperature (the average value was near to 78 °C ± 3 °C), the melting point and structural water content whereas the gel fraction slightly increased (from 0.72 to 0.78) with the increase the content of HA. The absorbed water decreased (from 85.7% to 80.5%) as a function of HA content The stress–strain curves were really different in hydrated and non-hydrated conditions, changing from non-linear, in presence of water, to linear behavior in a dried state, being in the first case consistent with the articular cartilage . The lowest friction coefficient was obtained for samples with 3 wt. % HA (0.067 ± 0.049), which is, together with a high resistance (721 ± 25 kPa), an important property for materials that will be used as articular replacement. The results indicate that this hydrogel could be used, after other studies, as articular cartilage replacement.  相似文献   

9.
Hybrid poly(ε-caprolactone) (PCL)/hydroxyapatite(HA) nanocomposites with various HA contents (0, 10, 20, 30 wt.%) were synthesized using an in-situ co-precipitation method. All nanocomposites prepared contained elongated HA nanocrystals dispersed uniformly in the PCL matrix without severe agglomeration. The tensile strength decreased from 13.5 ± 0.4 to 10.2 ± 0.3 MPa with increasing the HA content from 0 to 30 wt.%, whereas the elastic modulus increased from 85 ± 4.2 to 183 ± 6.6 MPa. In addition, the ALP activity was increased remarkably due to the presence of bioactive HA nanocrystals within the composites. The nanocomposite containing 30 wt.% HA showed a higher elastic modulus and ALP activity than the conventional PCL/HA composite with an initial HA content of 30 wt.%. This was attributed to the nanoscale hybridization of the HA nanocrystals without significant agglomeration.  相似文献   

10.
Nano-sized 58S bioactive glass (nano-58S) as the dispersed phase was added to β-tricalcium phosphate (β-TCP) to reinforce the mechanical properties, and then the β-TCP/nano-58S composite scaffolds were prepared via selective laser sintering (SLS). The effects of nano-58S on microstructure, mechanical properties, bioactivity, and biocompatibility of the composite scaffolds were evaluated. The results showed that nano-58S was homogeneously dispersed in the β-TCP matrix and the mechanical properties were gradually improved when the amount of nano-58S was no more than a certain value (15 wt.%). However, exceeding this value, nano-58S became the continuous phase and exhibited the brittleness of bioactive glass. Accordingly, the mechanical properties gradually decreased. The maximum fracture toughness and compressive strength were 1.347 ± 0.025 MPa · m1/2 and 18.2 ± 0.62 MPa, respectively. In vitro tests in the simulated body fluid (SBF) demonstrated that the apatite-like layer formed faster on the composite scaffolds than on the scaffold without nano-58S, indicating that the nano-58S glass could enhance the bioactivity of the composite scaffolds. The MG-63 cells culture experiment proved that nano-58S glass could further facilitate the growth of human osteoblastic cells.  相似文献   

11.
Hydroxyapatite (HA) and its based biomaterials could chemically bond directly to bone when implanted, resulting in the formation of a strong bone-implant interface. Carbon nanotubes (CNT) are believed to be very promising in the enhancement ceramic matrix and played an important role as reinforcement for imparting strength and toughness to brittle HA bioceramic. Here we demonstrate the potential use in reinforcing biomaterials through an attempt to use CNT strengthen brittle HA bioceramic. This work aims to study the optimum sintering conditions of CNT modified HA to get CNT–HA composite with improved mechanical properties using a rapid spark plasma sintering system. The microstructure, phases, chemical compositions and mechanical properties of the ceramic samples were characterized by various advanced methods. Though no obvious chemical reaction between CNT and HA has been detected, the physical crosslink caused by the presence of CNT resulted in that a CNT–HA composite with a relatively high value of modulus (~ 131.1 GPa) and hardness (~ 6.86 GPa) achieved at the sintering temperature of 1100 °C. In vitro cellular responses to the composites were assessed to investigate the proliferation and morphology of a human osteoblast cell line cultured on the various composites.  相似文献   

12.
In this work, nanoporous spinel/forsterite/zirconia ceramic composites were fabricated at 1600 °C for 2 h. The influence of zirconia content (up to 10 mass%) on the technological properties, nanopores formation, phase compositions, microstructure and thermal diffusivity of nanoporous ceramic composites was investigated. Nanospinel and nanoforsterite powders were synthesized via a modified co-precipitation and sol–gel techniques, respectively. Results indicated that apparent porosity of the fired nanoporous ceramic composites is mostly in the range 14.26–56.14% with the average pores diameter 35.8 nm. Using of nanopowders (spinel and forsterite) as the staring materials were achieved high mechanical (cold crushing strength  235–164 MPa) and elastic (Young’s modulus  123.6–4.5 GPa) properties of the prepared nanoporous ceramic composites. Microstructure analysis exhibited all of the crystalline phases and pores of the nanoporous ceramic composites are in the nanosize (35–40 nm). These nanoporous ceramic composites are promising porous ceramic materials for using in advanced applications due to their excellent combination properties.  相似文献   

13.
Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC–AlON composites over a temperature range between 175 °C and 275 °C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC–AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 °C in the monolithic AlON to 225 °C in the SiC–AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC–AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge-like characteristics, crack deflection, and crack branching in the SiC–AlON composites.  相似文献   

14.
Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and biological response. This report investigates the heat treating conditions and the Avrami crystallization kinetics of melt cast bioactive glass 45S5 at 680 °C. Glass discs were found to follow three dimensional bulk crystallization kinetics (Avrami exponent n = 3). Partially crystallized bioactive glass samples were subjected to in vitro immersion testing to assist a comparative study of the adhesion capabilities of the mineralized layer formed on crystalline and amorphous regions. Higher adhesion of the mineralized layer to the amorphous region was observed as compared to its crystalline counterpart. Furthermore, Palmqvist crack propagation in amorphous and partially crystallized bioactive glass was studied. The crack paths in amorphous bioactive glass were straight, yet crack deflections were observed in the crystalline regions, likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains present in the bioglass ceramic. Hence, the mineralized layer interfacial fracture toughness and bulk fracture toughness of bioglass ceramics are different from their amorphous counterpart.  相似文献   

15.
The magnetic and heat generating properties of the ferrimagnetic zinc-ferrite containing bioactive glass ceramics have been enhanced by aligning magnetic field, without any compositional or micro-structural changes in the material. The glass ceramics were heated to 600 °C and cooled in an aligning magnetic field of 1 T. Magnetically aligned samples were compared with the non-aligned samples. VSM measurements taken at 500 Oe showed that coercive force, remanance magnetization and hysteresis area increased for the aligned samples. This occurred because the aligning magnetic field setup an easy axis for the magnetic domains. After cooling, the domains were trapped and became stable along the direction of aligning field. Now stronger magnetic field was required to turn the domains away from their aligned positions. Thus magnetic properties were enhanced by the aligning magnetic field and it led to enhance the heat generation under magnetic induction furnace operating at 500 Oe and 60 kHz for 2 min. Data showed that maximum specific power loss and temperature increase after 2 min were 4.4 W/g and 6.3 °C respectively for the aligned sample of maximum zinc-ferrite crystalline content having pseudo single domain crystalline structure. The glass ceramics were immersed in simulated body fluid over weeks. FTIR, SEM and EDX results indicated the growth of precipitated Hydroxyapatite suggesting the bioactivity of the materials.  相似文献   

16.
《Composites Part A》2007,38(2):516-524
High performance polymer matrix composites based on poly(ether–ether–ketone) (PEEK) as matrix and aluminum nitride particle (AlNp) as filler were prepared. The effect of AlNp on the storage modulus, loss modulus, mechanical loss factor, and glass transition were investigated. The AlNp reinforcement is more pronounced above glass transition temperature (Tg). Composite containing 70 wt.% AlNp exhibit about 100% increase in storage modulus at 50 °C and about 500% increase at 250 °C, and 19 °C increase in glass transition temperature as compared to pure PEEK. Peak height of tan δ for composites was decreased to one sixth of the pure PEEK. It is probably due to improved crystallinity of PEEK and strong interaction between the AlNp and PEEK matrix. SEM reveals excellent distribution of AlNp in PEEK matrix and good interaction between AlNp and PEEK matrix.  相似文献   

17.
Mechanical performance of three oxide/oxide ceramic matrix composites (CMCs) based on Nextel 610 fibers and SiOC, alumina, and mullite/SiOC matrices respectively, is evaluated herein. Tensile strength and stiffness of all materials decreased at 1000 °C and 1200 °C, probably because of degradation of fiber properties beyond 1000 °C. Microstructural changes in the composites during exposure at 1000 °C and 1200 °C for 50 h reduce their flexural strength, fracture toughness and work of fracture. A literature review regarding mechanical properties of several oxide/oxide CMCs revealed lower influence of fiber properties on composite strength compared with elastic modulus. The tested composites exhibit comparable stiffness and strength but higher fracture toughness compared with average values determined from a literature review. Considering CMCs with different compositions, we observed an interesting linear trend between strength and fracture toughness. The validity of the linear relationship between fracture strength and flexural toughness for CMCs is discussed.  相似文献   

18.
The purpose of this study was to prepare poly(DL‐lactic acid) (PDLLA)/Bioglass® composites of foam‐like structure, to measure the degree of bioactivity of the composites by studying the formation of hydroxyapatite (HA) after immersion in simulated body fluid (SBF) and to test the initial attachment of human osteoblasts within the porous network. It was found that crystalline HA formed on the Bioglass® coated PDLLA foams after 7 days of immersion in SBF. HA formed also on the surfaces of non‐coated PDLLA foams, however the rate and amount of HA formation were much lower than in the composites. The rapid formation of HA on the Bioglass®/PDLLA foam surfaces confirmed the high bioactivity of these materials. Osteoblasts attached within the porous network throughout the depth of the foams. Cell density was found to be higher in the PDLLA/Bioglass® composites compared to the pure PDLLA foams. The composite foams developed here exhibit the required bioactivity to be used as scaffolds for bone tissue engineering.  相似文献   

19.
《Composites Part A》2005,36(10):1430-1439
Static strength tests were carried out for cured carbon nano-fiber (CNF) dispersed resin as tow-phase composites and for CFRP laminates using CNF dispersed resin as three-phase composites. To obtain these CFRP laminates, the CNF dispersed resin was impregnated to CF reinforcement and cured by hot press. The CNF used was a cup-stacked type of nano-fiber, CARBERE®, made by GSI CREOS Corporation, Japan. Two CNF aspect ratios of 10 and 50 were employed. These fiber lengths of the CNF were controlled about 1000 nm (AR10) and 5000 nm (AR50), respectively. The CNF was dispersed to EPIKOTE 827® epoxy resin in two values of CNF weight ratios, 5 and 10% to the resin. TORAYCA® C6343 plain woven fabric was used for reinforcement of the CFRP laminates. The cure condition with the agent of aromatic amine EPIKURE W® was 100 °C for two hours followed by a post cure of 175 °C for 4 h. The static strength tests led to the conclusion that the dispersion of CNF into epoxy improves mechanical properties of the tow-phase composites, and that CFRP laminates with CNF dispersed resin also exhibit higher compressive strength than CFRP laminates without CNF as control. Possibilities of improvement in mechanical properties were confirmed in the two and three-phase composites. Moreover, a proportional tendency in strength improvements to CNF weight content was found in the two present composites so far in the present test results.  相似文献   

20.
Silica carbide modified carbon cloth laminated C–C composites have been successfully joined to lithium–aluminum–silicate (LAS) glass–ceramics using magnesium–aluminum–silicate (MAS) glass–ceramics as interlayer by vacuum hot-press technique. The microstructure, mechanical properties and fracture mechanism of C–C/LAS composite joints were investigated. SiC coating modified the wettability between C–C composites and LAS glass–ceramics. Three continuous and homogenous interfaces (i.e. C–C/SiC, SiC/MAS and MAS/LAS) were formed by element interdiffusions and chemical reactions, which lead to a smooth transition from C–C composites to LAS glass–ceramics. The C–C/LAS joints have superior flexural property with a quasi-ductile behavior. The average flexural strength of C–C/LAS joints can be up to 140.26 MPa and 160.02 MPa at 25 °C and 800 °C, respectively. The average shear strength of C–C/LAS joints achieves 21.01 MPa and the joints are apt to fracture along the SiC/MAS interface. The high retention of mechanical properties at 800 °C makes the joints to be potentially used in a broad temperature range as structural components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号