首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a facile one-pot strategy for scalable synthesis of robust magnetic poly(vinyl alcohol) (mPVA) gel beads is developed. Through dropwise addition of mixed aqueous solution of iron salts and PVA solution into alkaline (e.g., ammonia, NaOH, and KOH) solution, mPVA gel beads with uniform size and excellent superparamagnetic property can be fabricated based on the simultaneous formation of magnetic iron oxide nanoparticles (MIONs) and cross-link of PVA chains. Moreover, this approach can be extended to prepare dual- or multiresponsive gel beads through simply adding functional fillers into PVA solution (e.g., mPVA-PNIPAM gel beads that possess both magnetic and temperature responsibilities can be readily prepared by adding temperature responsive poly(N-isopropylacrylamide) (PNIPAM) into PVA solution). It is found that that the obtained mPVA gel beads exhibit high drug loading level (e.g., above 70%) after the treatment of freezing-thawing. Drug release experiments reveal that the drug release rate and amount of the mPVA gel beads can be tuned by operating the external magnetic field and adjusting the concentration of iron oxide nanoparticles and temperature (for mPVA-PNIPAM gel beads). The present work is of interest for opening up enormous opportunities to make full use of magnetic gel beads in drug delivery and other applications, because of their facile availability, cost-effective productivity, and tunable drug release performance.  相似文献   

2.
Composite consisting of silver nanoparticles coordinated to poly(GMA-co-EGDMA) macroporous copolymer was prepared by attachment of amino group to the poly(GMA-co-EGDMA) in the reaction with ethylene diamine, and consequent reduction of silver ions with amino groups at elevated temperature. The infrared measurements indicated that surface of silver nanoparticles is passivated through the coordination of the lone pair on the N atom of the imine present in the skeleton of the poly(GMA-co-EGDMA) copolymer. The inductively coupled plasma atomic emission, UV–Vis reflection spectroscopy, X-ray diffraction, and transmission electron microscopy measurements revealed the high content (52 wt%) of well-separated silver nanoparticles in the size range of 5–10 nm onto composite. Antimicrobial efficiency of composite was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus, and fungus C. albicans in wide concentration range of composite. The composite ensured almost maximum reduction of both bacteria, while the fungi reduction reached 96.5 %.  相似文献   

3.
Hydrogel blends were prepared from water-soluble polymers of poly(vinyl alcohol-vinyl acetate) and poly(vinyl pyrrolidone). The method of preparation was optimized and different compositions of blends were characterized. The effect of thermal treatment and the introduction of an aldehydic crosslinking agent in the blend was also studied. The swelling characteristics of the various compositions, their thermal behaviour and the state of water was examined. Mechanical properties of the hydrogels were determined and it was observed that blends containing glutaraldehyde produced materials with good mechanical integrity and high water contents.  相似文献   

4.
Single-crystalline silver nanoplates with an average in-plane dimension and thickness of about 700 and 25 nm, respectively, were fabricated on a large scale in aqueous poly(vinyl pyrrolidone)/AgNO3 solution by a simple one-step hydrothermal method. In this process, poly (vinyl pyrrolidone) (PVP) acts as both reducing agent and shape-directing agent. SAED and XRD measurements reveal that the growth of silver nanoplates is mainly dominated by (111) facets.  相似文献   

5.
Ultrafine fibers of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) (CS/PVA/PVP) were prepared via electrospinning. The structure and morphology of CS/PVA/PVP ultrafine fibers was characterized by the Fourier transform infrared (FT-IR) spectroscope and scanning electron microscope (SEM). Furthermore, the effects of the concentration of PVA, PVP and the electrospinning voltage on the morphology of ultrafine fibers were investigated the the SEM. When the concentration of PVA was at the range of 30wt%–40wt%, ultrafine fibers could be obtained. The diameter distributions of ultrafine fibers decreased when the electrospinning voltage increased from 20 to 30 kV. The rough surface fibers could be obtained after etching with CHCl3.  相似文献   

6.
Transparent hydrogels were prepared by blending solutions of poly(vinyl alcohol-vinyl acetate) with either poly(acrylic acid) or poly(vinyl pyrrolidone) in the presence of glutaraldehyde as a crosslinking agent. The network obtained from the poly(vinyl pyrrolidone) system was subjected to various thermal treatments, the effects of which have been studied. Dynamic mechanical analysis was used to characterize the hydrogels and to establish the suitability of these blends for use in biomedical applications. The swelling behaviour was followed under dynamic loads as well as by mass difference. Different frequencies were used to study the dynamic properties of the hydrogel blends which showed an increase in storage modulus with increasing frequency. A comparison of modulus values obtained dynamically were in agreement with data obtained mechanically in tension.This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials. Oporto, Portugal, 10–13 September.  相似文献   

7.
Magnetite (Fe3O4) nanostructures with different morphologies including uniform nanoparticles, magnetic beads and nanorods were synthesized via a co-precipitation method. The synthesis process was performed at various temperatures in the presence of polyvinyl alcohol (PVA) at different concentrations. It is shown that small amounts of PVA act as a template in hot water (70 °C), leading to the oriented growth of Fe3O4 nanorods, which was confirmed by selected area electron diffraction. Individually coated magnetite nanoparticles and magnetic beads were formed at a relatively lower temperature of 30 °C in the folded polymer molecules due to the thermo-physical properties of PVA. When a moderate temperature (i.e. 50 °C) was used, nanorods and nanobeads co-existed. At higher concentrations of PVA (polymer/iron mass ratio of 5), however, the formation of magnetic beads was favored. The nanorods were shown to be unstable upon exposure to electron beams. Freezing/thawing process was applied post synthesis as temperature programming to fabricate stable nanorods with rigid walls.  相似文献   

8.
Methotrexate (MTX), a stoichiometric inhibitor of dihydrofolate reductase enzyme, is a chemotherapeutic agent for treating a diversity of neoplasms. In this study, we design and developed a new formulation of MTX that serves as drug carrier and examined its cytotoxic effect in vitro. This target drug delivery system is dependent on the release of the MTX within the lysosomal compartment. The iron oxide magnetic nanoparticles (IONPs) were first surface-coated with L-lysine and subsequently conjugated with MTX through amidation between the carboxylic acid end groups on MTX and the amine groups on the IONPs surface. MTX-conjugated L-lysine coated IONPs (F-Lys-MTX NPs) was characterized by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. The cytotoxicity of the void of MTX and F-Lys-MTX NPs were compared to each other by MTT assay of the treated MCF-7 cell lines. The results showed that the ζ-potential of F-Lys-MTX NPs was about ?5.49?mV and the average size was 43.72?±?4.73?nm. Model studies exhibited the release of MTX via peptide bond cleavage in the presence of proteinase K and at low pH. These studies specify that F-Lys-MTX NPs have a very remarkable anticancer effect, for breast cancer cell lines.  相似文献   

9.
Nanofiber webs of chitosan (CS)/poly(vinyl alcohol) (PVA) blends incorporated with silver nanoparticles (AgNs) were fabricated by two different methods: a refluxing method and an annealing method. We found that the characterization and antibacterial activity of AgNs depended on not only the fabrication methods but also the weight ratio of CS and PVA in the CS/PVA blend. The change in the size and number of AgNs due to the interaction between AgNs and CS, in turn, affected the antibacterial property of the non-woven webs. Non-woven webs of CS/PVA nanofibers containing AgNs that were fabricated by the refluxing method showed higher antibacterial ability against Escherichia coli than did the other types of non-woven webs. The morphology of the electrospun non-woven webs was observed by field emission scanning electron microscopy. The characterization of AgN formation on the surface of electrospun fibers was examined by transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.  相似文献   

10.
In this study, the biocompatibility and antimicrobial activity of silver nanoparticles (Ag NPs) were evaluated in vitro and in vivo. The cytotoxicity of Ag NPs (average diameter: 2-5 nm) against CHO-K1 cells was determined via WST-8 assay, and their genotoxicity was examined via Salmonella typhimurium reverse mutation assay (Ames test). The acute toxicity and intracutaneous reactivity of Ag NPs were evaluated using animal models of mice and rabbits, respectively. The antibacterial effects of Ag NPs on the Gram (-) bacterial strains of Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027 and on the Gram (+) bacterial strains of Staphylococcus aureus ATCC 6538p and Bacillus subtilius ATCC 6633 were determined by measuring the minimum inhibitory concentrations. The Ag NPs were highly cytotoxic to the L-929 cells at over 2 ppm but were non-cytotoxic at lower than 1 ppm. Moreover, the Ag NPs at 1 ppm or lower did not show genotoxicity, acute toxicity and intracutaneous reactivity. It was also found that the Ag NPs exerted effective antimicrobial activities on both the Gram (-) and (+) bacterial strains within the range from 0.06 to 0.98 ppm for 50% MIC.  相似文献   

11.
Development of bioadhesive nanoparticles is of great interest to improve drug absorption through the intestinal barrier. Various Polysaccharide-coated poly(alkylcyanoacrylate) nanoparticles were prepared. The bioadhesive properties of the nanoparticles coated with dextran or chitosan in end-on or side-on conformation were evaluated with an ex-vivo adsorption experiment on rat intestine. Results show that diffusion of nanoparticles in mucus layer was governed by the nanoparticle diameter and isotherms of adsorption were influenced by the nature of polysaccharide used. High amount of nanoparticles coated with chitosan can be entrapped in the mucus layer even at low nanoparticle concentration in suspension. When nanoparticle concentration increased, a pseudo-plateau was reached. In the case of dextran-coated nanoparticles, linear increase of adsorption was observed and no saturation phenomenon was highlighted over the range of nanoparticle concentration used in this study. These results suggested that interactions involved in bioadhesion mechanism depended on the nature of polysaccharide. Electrostatic interactions are enhanced between chitosan-coated nanoparticles and glycoproteins of mucus leading to a saturated adsorption phenomenon whereas dextran-coated nanoparticles interacted by non-electrostatic interactions with mucus resulting in a non-saturated phenomenon. Polysaccharides grafted at the nanoparticle surface in the brush conformation appeared more favorable to promote interactions of nanoparticles with glycoproteins of mucus in comparison with the more compact loop conformation of polysaccharide chains.  相似文献   

12.
Colloidal PVP (poly(vinyl pyrrolidone))–stabilized gold nanoparticles (PVP–AuNPs) are synthesized in aqueous solution with PVP as a reducing and stabilizing agent using a short microwave (MW) heating duration of 1 min. The size and uniformity of the synthesized PVP–AuNPs can be varied by modifying the concentration of sodium citrate (Na3Ct), which acts predominantly as mediator of the stability of PVP–AuNP formation during the rapid synthesis. Due to the increase in the Na3Ct concentration, the number of citrate ions adsorbed on the growing surface of AuNPs increase, and less reactive gold solute complexes are formed, leading to slow stable reactions that produce small, uniform colloidal PVP–AuNPs. We therefore demonstrate that by adjusting the Na3Ct concentration used in the PVP reduction, the diameter of PVP–AuNPs was varied from 19.47 ± 3.97 nm to 7.94 ± 0.14 nm when using constant concentrations of chloroauric acid (HAuCl4) and PVP.  相似文献   

13.
把聚乙二醇(PEG)和十二烷基磺酸钠(SDS)包裹的自制纳米Fe3O4磁流体加入到分散聚合体系,制备出粒径300~500μm的聚(苯乙烯-二乙烯基苯-甲基丙烯酸)磁性高分子微球并用光学显微镜、红外光谱(FT-IR)、X射线粉末衍射仪(XRD)、振动样品磁强计(VSM)以及热重分析仪(TG)等对其表征。结果表明,其粒径分布均匀,表面光滑且含有羧基,室温比饱和磁化强度达到3.63A·m2/kg,磁流体的包裹率随磁流体用量的增加而增加,最高达到17.07%。  相似文献   

14.
The adsorptive and catalytic characteristics of waste-reclaimed adsorbent (WR), which is a calcined mixture of bottom-ash and dredged-soil, was investigated for its application to treating BTEX contamination. BTEX adsorption in WR was 54%, 64%, 62%, and 65%, respectively, for a 72 h reaction time. Moreover, the catalytic characteristics of WR were observed when three types of oxidation systems (i.e., H(2)O(2), persulfate (PS), and H(2)O(2)/Fe(III)/oxalate) were tested, and these catalytic roles of WR could be due to iron oxide on its surface. In PS/WR system, large amounts of metal ions from WR were released because of large drops of solution pH, and the surface area of WR was also greatly reduced. Moreover, the BTEX that was removed per consumed oxidant (ΔC(rem)/ΔOx) increased with increasing PS. In H(2)O(2)/Fe(III)/oxalate with WR system, the highest BTEX degradation rate constants (k(deg)) were calculated as 0.338, 0.365, 0.500 and 0.716 h(-1), respectively, when 500 mM of H(2)O(2) was used, and the sorbed BTEX on the surface of WR was also degraded, which suggests the regeneration of WR. Therefore, the oxidant-injected permeable reactive barrier filled in WR could be an alternative to treating BTEX with both adsorption and catalytic degradation.  相似文献   

15.
A novel route to the synthesis of polymer-coated silver nanoparticles (NPs) was developed on the basis of the reduction of Tollens' reagent using mercaptosuccinic acid/poly(ethylene glycol) (MSA/PEG) copolymer as reducing agent and stabilizer simultaneously. The average size of the polymer-coated silver NPs could be controlled in a wide range from 10 to 120 nm by changing the MSA/PEG molar ratio. These surface-coated silver NPs can be uniformly dispersed in polar solvent and a homogeneous silver NPs/acetone dispersion has been prepared. Silver–epoxy nanocomposites have been developed by incorporating these silver NPs into epoxy. The nanocomposites with silver volume content of 25% showed a more than 3000% increase in dielectric constant as compared to neat matrix and a relatively low dielectric loss below 0.05, which meets the main requirement for embedded decoupling capacitors. Moreover, thermal properties of the silver–epoxy nanocomposites were also characterized by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The initial decomposition temperature and glass transition temperature were elevated with the increase of silver content, which exhibit great thermal stability and facilitate electrical applications requiring higher heat-resistance.  相似文献   

16.
Oxide-coated iron nanoparticles with average dimensions from 6 to 75 nm have been synthesized by chemical vapor condensation. The structure of particles and their size distribution have been determined. These data are used to interpret the results of measurements of the magnetic hysteresis characteristics.  相似文献   

17.
A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe3O4NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe3O4NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1–60 and 1.5–70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25?°C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%–100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 °C.  相似文献   

18.
Poly(vinyl pyrrolidone) and poly(methacrylic acid) multilayer capsules based on hydrogen bonding have been prepared by the layer-by-layer approach and used to encapsulate and release rifampicin, an anti-tuberculosis drug. Removal of silica core using a buffer of ammonium fluoride and hydrofluoric acid at about pH 3 was found to produce better capsules than hydrofluoric acid alone. An eight-layered capsule had a wall thickness of 20 nm. Maximum encapsulation was found to be about 86 μg at 40 °C with 1 ± 0.2 × 106 capsules. Release studies showed a burst kind of release and maximum release was obtained above pH 7 where the capsules disintegrate rapidly thereby releasing the drug in a short period. Interactions studies with Mycobacterium smegmatis showed that the capsules were cytocompatible and the released drug functioned with the same efficacy as the free drug.  相似文献   

19.
Magnetic particles are extremely interesting for several biomedical applications; amongst these are therapeutic applications, such as: hyperthermia and release of drugs. The use of magnetic particles to induce hyperthermia in biological tissues is an important factor in cancer therapy. The aim of this study was to prepare and characterize iron oxide magnetic particles coated with biopolymer chitosan, and also to produce ferrofluids from the magnetic particles. The iron oxide magnetic particles (IOMP) were coated with chitosan (CS) by spray-drying method using two IOMP/coating ratios (IOMP/CS = 1.6 and IOMP/CS = 4.5). The magnetic particles were characterized by way of scanning electronic microscopy and energy-dispersive X-ray. The analysis by energy-dispersive X-ray was carried out to determine the chemical composition of particles in samples. The size distribution the iron oxide magnetic particles uncoated and coated were evaluated by the laser diffraction analysis and image analysis, respectively. Amongst the prepared ferrofluids, the sample IOMP/CS = 1.6 proved to be the one that has brought about the best results in therapeutics applications, such as in hyperthermia treatment. This sample was placed within an alternating magnetic field during 40 min, it was observed that 1 °C heated in 3 min and underwent a temperature variation of 7 °C, since it varied from 25 °C to 32 °C. Considering that the experiment would be carried out at body temperature 37 °C, probably, the temperature variation would be very close to the one reported at 25 °C. In such a way, the cancerous cells would reach 44–45 °C and at such temperatures the cancer cells generally perish.  相似文献   

20.
Here we communicate our experimental results on the synthesis of silver nanoparticles in solution and thin films using silver nitrate and poly vinyl alcohol (PVA) mixture at different concentrations and different laser irradiations. Detailed studies were carried out by varying pulse width, wavelength, exposure time, and energy of the laser. Formation of nanoparticles was confirmed through color change from transparent to yellow. Irradiated solutions and thin films at different concentrations showed plasmon peak in the absorption spectra. Formation of different sized nanoparticles at different energies with peak shift is observed. Transmission electron microscope (TEM) results confirmed the formation of nanoparticles with size of the particles varying from 2 to 200 nm. Formation of silver nanoparticles with hexagonal and different shapes were observed in particular with 355 nm laser irradiation. Influence of wavelength, pulse width, exposure time, and energy in the synthesis of silver nanoparticles is highlighted. Electron diffraction patten of a single nanoparticle in TEM showed polycrystallinity with cubic nature for the silver nanoparticles prepared. We also compared the linear and nonlinear absorption properties of the freshly prepared nanoparticles with nanoparticles solution left in a shelf for a long period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号