首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Electrospun polymer nanofibers show promise as components of scaffolds for tissue engineering because of their ability to orient regenerating cells. Our research focuses on aligned electrospun fiber scaffolds for nerve regeneration. Critical to this are highly aligned fibers, which are frequently difficult to manufacture reproducibly. Here we show that three variables: the distance between the spinneret tip and collector, the addition of DMF to the solvent, and placement of an aluminum sheet on the spinneret together greatly improve the alignment of electrospun poly-L-lactide (PLLA) nanofibers. We identified the most important variable as tip-to-collector distance. Nanofiber alignment was maximal at 30 cm compared to shorter distances. DMF:chloroform (1:9) improved nanofiber uniformity and was integral to maintaining a uniform stream over the 30 cm tip-to-collector distance. Other ratios caused splattering of the solution or flattening or beading of the fibers and non-uniform fiber diameter. The aluminum sheet helped to stabilize the electric field and improve fiber alignment provided that it was placed at 1 cm behind the tip, while other distances destabilized the stream and worsened alignment. This study demonstrates that control of these variables produces dramatic improvement in reproducibly obtaining high alignment and uniform morphology of electrospun PLLA nanofibers.  相似文献   

2.
Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and needs in vascular tissue regeneration. In this study, four different kinds of native proteins namely collagen, gelatin, fibrinogen, and bovine serum albumin were incorporated with polyurethane (PU) and electropsun to obtain composite PU/protein nanofibers. SEM studies showed that the fiber diameters of PU/protein scaffolds ranged from 245 to 273 nm, mimicking the nanoscale dimensions of native ECM. Human aortic smooth muscle cells (SMCs) were cultured on the electrospun nanofibers, and the ability of the cells to proliferate on different scaffolds was evaluated via a cell proliferation assay. Cell proliferation on PU/Coll nanofibers was found the highest compared to other electrospun scaffolds and it was 42 % higher than the proliferation on PU/Fib nanofibers after 12 days of cell culture. The cell–biomaterial interaction studies by SEM confirmed that SMCs adhered to PU/Coll and PU/Gel nanofibers, with high cell substrate coverage, and both the scaffolds promoted cell alignment. The functionality of the cells was further demonstrated by immunocytochemical analysis, where the SMCs on PU/Coll and PU/Gel nanofibers expressed higher density of SMC proteins such as alpha smooth muscle actin and smooth muscle myosin heavy chain. Cells expressed biological markers of SMCs including aligned spindle-like morphology on both PU/Coll and PU/Gel with actin filament organizations, better than PU/Fib and PU/BSA scaffolds. Our studies demonstrate the potential of randomly oriented elastomeric composite scaffolds for engineering of vascular tissues causing cell alignment.  相似文献   

3.
The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels.  相似文献   

4.
Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-l-lactic acid/poly-(α,β)-dl-aspartic acid/Collagen (PLLA/PAA/Col I&III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p  0.05) in PLLA/PAA/Col I&III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I&III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I&III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues.  相似文献   

5.
Myocardial infarction, a main cause of heart failure, leads to loss of cardiac tissue impairment of left ventricular function. Repair of diseased myocardium with in vitro engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for myocardial infarction. We attempted to solve these problems by in vitro study by selecting a plant based polysaccharides beech wood Xylan for the normal functioning of infarcted myocardium. The present study fabricated Xylan based nanofibrous scaffolds cross-linked with glutaraldehyde (Glu) vapors for 24 h, 48 h and 1% Glu blended fibers for the culture of neonatal rat cardiac cells for myocardial infarction. These nanofibers were characterized by SEM, FT-IR, tensile testing and cell culture studies for the normal expression of cardiac proteins. The observed results showed that the Xylan/polyvinyl alcohol (PVA) 24 h Glu vapor cross-linked nanofibers (427 nm) having mechanical strength of 2.43 MPa and Young modulus of 3.74 MPa are suitable for the culture of cardiac cells. Cardiac cells proliferation increased only by 11% in Xylan/PVA 24 h Glu cross-linked nanofibers compared to control tissue culture plate (TCP). The normal cardiac cell morphology was observed in 24 h cross-linked Xylan/PVA nanofibers but 48 h cross-linked fibers cell morphology was changed to flattened and elongated on the fibrous surfaces. Confocal analysis for cardiac expression proteins actinin, connexin 43 was observed normally in 24 h Glu cross-linked nanofibers compared to all other nanofibrous scaffolds. The fabricated Xylan/PVA nanofibrous scaffold may have good potential for the normal functioning of infarcted myocardium.  相似文献   

6.
A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 ± 185 nm to 394 ± 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds.  相似文献   

7.
Poly(ε-caprolactone) (PCL) electrospun nanofibers have been reported as a scaffold for tissue engineering application. However, high hydrophobicity of PCL limits use of functional scaffold. In this study, PCL/polyethylenimine (PEI) blend electrospun nanofibers were prepared to overcome the limitation of PCL ones because the PEI as a cationic polymer can increase cell adhesion and can improve the electrospinnability of PCL. The structure, mechanical properties and biological activity of the PCL/PEI electrospun nanofibers were studied. The diameters of the PCL/PEI nanofibers ranged from 150.4 ± 33 to 220.4 ± 32 nm. The PCL/PEI nanofibers showed suitable mechanical properties with adequate porosity and increased hydrophilic behavior. The cell adhesion and cell proliferation of PCL nanofibers were increased by blending with PEI due to the hydrophilic properties of PEI.  相似文献   

8.
Poly(ethylene glycol) methacrylate (PEGMA) was introduced into a polyurethane (PU) solution in order to prepare electrospun scaffold with improving the biocompatibility by electrospinning technology for potential application as small diameter vascular scaffolds. Crosslinked electrospun PU/PEGMA hybrid nanofibers were fabricated by a reactive electrospinning process with N,N'-methylenebisacrylamide as crosslinker and benzophenone as photoinitiator. The photoinduced polymerization and crosslinking reaction took place simultaneously during the electrospinning process. The electrospinning solutions with various weight ratios of PU/PEGMA were successfully electrospun. No significant difference in the scaffold morphology was found by SEM when PEGMA content was <20 wt%. The crosslinked fibrous scaffolds of PU/PEGMA exhibited higher mechanical strength than the pure PU scaffold. The hydrophilicity of scaffolds was controlled by varying the PU/PEGMA weight ratio. The tissue compatibility of electrospun nanofibrous scaffolds were tested using human umbilical vein endothelial cells (HUVECs). Cell morphology and cell proliferation were measured by SEM, fluorescence microscopy and thiazolyl blue assay (MTT) after 1, 3, 7 days of culture. The results indicated that the cell morphology and proliferation on the crosslinked PU/PEGMA scaffolds were better than that on the pure PU scaffold. Furthermore, the appropriate hydrophilic surface with water contact angle in the range of 55-75° was favorable of improvement the HUVECs adhesion and proliferation. Cells seeded on the crosslinked PU/PEGMA (80/20) scaffolds infiltrated into the scaffolds after 7 days of growth. These results indicated the crosslinked electrospun PU/PEGMA nanofibrous scaffolds were potential substitutes for artificial vascular scaffolds.  相似文献   

9.
Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite [HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0–1 wt.%) and laser power (6–10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3 ± 10 HV and 1.72 ± 0.10 MPa m1/2, respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical properties of BCP bone scaffolds fabricated with SLS.  相似文献   

10.
Poly(vinylpyrolidone) (PVP) nanofibers incorporating gold nanoparticles (Au-NPs) were produced in combination with laser ablation and electrospinning techniques. The Au-NPs were directly synthesized in PVP solution by laser ablation and then, the electrospinning of PVP/Au-NPs solution was carried out for obtaining nanofibrous composites. The presence of Au-NPs in the PVP nanofibers was confirmed by SEM, TEM and EDX analyses. The SEM imaging elucidated that the electrospun PVP/Au-NPs nanofibers were bead-free having average fiber diameter of 810 ± 480 nm. The TEM imaging indicated that the Au-NPs were in spherical shape having diameters in the range of 5 to 20 nm and the Au-NPs were more or less dispersed homogeneously in the PVP nanofiber matrix. The FTIR study suggested the presence of molecular interactions between PVP matrix and the Au-NPs in the nanofibrous composites. The UV–Vis measurement confirmed the enhancement of the optical properties of the PVP/Au-NPs nanofibers in the solid state due to the surface plasma resonance effect of Au-NPs.  相似文献   

11.
Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14?days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.  相似文献   

12.
In this work, PEG–PLLA electrospun fibers were developed as a new controlled release system for macrolide antibiotic drug brefeldin A (BFA). SEM and XRD analyses of the BFA-loaded PEG–PLLA fibers revealed that the average diameter of fibers was below 950 nm with smooth surfaces, and the drug was well incorporated into the fibers in amorphous form. The release profiles of BFA in PBS were measured by HPLC, demonstrating that the controlled release of BFA could be gained for long time. The in vitro antitumor activity against human liver carcinoma HepG2 cells of the fibers containing 3%, 6%, 9%, 12% and 15% BFA were examined by MTT method, and the results showed that cell growth inhibition rates at 72 h were 64%, 77%, 80%, 81% and 85%, respectively. These results strongly suggested that the BFA/PEG–PLLA fibers had an effect of controlled release of BFA and were suitable for postoperative chemotherapy of cancers.  相似文献   

13.
Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.  相似文献   

14.
Tissue engineering holds great promise in providing vascular grafts as substitutes for damaged small-diameter blood vessels. Two of the key factors in vascular tissue engineering are biocompatible scaffolds that mimic the effects of extracellular matrix and the source of seeding cells. Synthetic poly-l-lactic acid (PLLA) nanofibers has been shown to be excellent scaffolds for tissue engineering. Outgrowth endothelial cells (OECs) isolated from human peripheral blood could also be expanded in vitro and stably maintain the differentiated phenotypes and could be used as the seeding cells for engineering autologous vascular crafts. Here we tested the possibility of combining these two together. We found that PLLA nanofibers are not only biocompatible with OECs originally isolated from rabbit peripheral blood, the aligned PLLA fibers actually promoted and guided their sustained proliferation. These results suggest that aligned PLLA could be excellent both as the scaffolds and as a promoter of cell growth during vascular tissue engineering.  相似文献   

15.
Electrospun Nanofiber sheets have been shown to mimic the structure of extracellular matrix (ECM). Although these nanofibers have shown great potential for use as tissue engineering scaffolds, it is difficult for the electrospun nanofiber based sheets to be shaped into the desired three-dimensional structure. In this study, poly(L-lactic acid) (PLLA), a biodegradable and biocompatible polyester, was electrospun to produce nanofibers that were treated with an amino group containing base in order to fabricate polymeric nanocylinders. The aspect ratio of the PLLA nanocylinders was tunable by varying the aminolysis time and density of the amino group containing base. The effects of changes in nanofibrous morphology of the PLLA nanocylinders/macro-porous gelatin scaffolds on cell adhesion and proliferation were evaluated. The results revealed different cell morphology, adhesion, and proliferation in the nanocylinders composite gelatin scaffold versus gelatin scaffold alone. Confocal laser scanning microscopy observation showed more spreading and a more flattened cell morphology after NIH3T3 cells were cultured on PLLA nanocylinders/gelatin scaffolds for 10 hours and 4 days. These results indicate that the gelatin/PLLA nanocylinder composite is a promising way to fabricate 3D nanofibrous scaffolds that accelerates cell adhesion and proliferation for tissue engineering.  相似文献   

16.
The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.  相似文献   

17.
Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation.  相似文献   

18.
The development of suitable bioactive three-dimensional scaffold for the promotion of bone regeneration is critical in bone tissue engineering. The purpose of this study was to investigate in vivo osteogenesis of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds for bone repair, as well as the relationship between osteogenic properties of SCPP scaffolds and the secretion of bFGF and VEGF from osteoblasts stimulated by SCPP. Besides, the advantages of scaffolds seeded with mesenchymal stem cells (MSCs) for bone repair were also studied. Firstly, the bone repair evaluation of scaffolds was performed on a rabbit segmental bony defects model over a period of 16 weeks by histology combined with X-ray microradiography. And then, in order to avoid the influence from the other factors such as hypoxia which emerge in vivo study and affect the secretion of VEGF and bFGF from host cells, human osteoblast-like cells (MG63) were seeded to SCPP, CPP and HA scaffolds in vitro to determine the ability of these scaffolds to stimulate the secretion of angiogenic growth factors (VEGF and bFGF) from MG63 and further explore the reason for the better osteogenic properties of SCPP scaffolds. The histological and X-ray microradiographic results showed that the SCPP scaffolds presented better osteogenic potential than CPP and HA scaffolds, when combined with MSCs, the SCPP scaffolds could further accelerate the bone repair. And the amounts of VEGF measured by ELISA assay in SCPP, CPP and HA groups after cultured for 7 days were about 364.989 pg/mL, 244.035 pg/mL and 232.785 pg/mL, respectively. Accordingly, the amounts of bFGF were about 27.085 pg/mL, 15.727 pg/mL and 8.326 pg/mL. The results revealed that the SCPP scaffolds significantly enhanced the bFGF and VEGF secretion compared with other scaffolds. The results presented in vivo and in vitro study demonstrated that the SCPP could accelerate bone formation through stimulating the secretion of VEGF and bFGF from osteoblasts, making it attractive for bone regeneration.  相似文献   

19.
The uniform and highly smooth nanofibers of poly(ε-caprolactone) (PCL) composited with different multi-walled carbon nanotubes (MWCNTs) content (ranging from 0.1 wt.% to 5 wt.%) were successfully prepared by electrospinning method without the occurrence of bead defects in this study. The PCL–0.5 wt.%MWCNTs nanofiber membrane exhibited the maximum tensile strength (about 1.42 MPa), which was increased by 46% compared with that of electrospun pure PCL nanofiber membrane. Moreover, the PCL–MWCNTs nanofiber membrane exhibited three-dimensional porous structure with a high porosity over 90%. The average diameter of PCL–MWCNTs nanofibers decreased with the addition of MWCNTs and there was a narrow diameter distribution in the range of 52–244 nm when the amount of MWCNTs was 0.5 wt.%. Compared with pure PCL nanofibers, PCL–MWCNTs nanofibers showed accelerating degradation behavior. In addition, the cytotoxicity results revealed that the electrospun PCL–MWCNTs nanofiber membranes possessed good in vitro biocompatibility, and hemolysis and kinetic clotting tests indicated that the PCL nanofiber membranes did not enhance blood coagulation after the addition of MWCNTs. It can be concluded that such kind of electrospun PCL–MWCNTs nanofibers may be promising candidate for tissue engineering scaffold application.  相似文献   

20.
In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300% in 1 h and ~ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号