首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposome size and in vitro release of the active substance belong to critical quality attributes of liposomal carriers. Here, we apply asymmetric flow field-flow fractionation (AF4) to characterize theranostic liposomes prepared by thin lipid film hydration/extrusion or microfluidics. The vesicles’ size was derived from multi-angle laser light scattering following fractionation (AF4) and compared to sizes derived from dynamic light scattering measurements. Additionally, we adapted a previously developed AF4 method to study zinc phthalocyanine (ZnPc) release/transfer from theranostic liposomes. To this end, theranostic liposomes were incubated with large acceptor liposomes serving as a sink (mimicking biological sinks) and were subsequently separated by AF4. During incubation, ZnPc was transferred from donor to acceptor fraction until reaching equilibrium. The process followed first-order kinetics with half-lives between 119.5–277.3 min, depending on the formulation. The release mechanism was postulated to represent a combination of Fickian diffusion and liposome relaxation. The rate constant of the transfer was proportional to the liposome size and inversely proportional to the ZnPc/POPC molar ratio. Our results confirm the usefulness of AF4 based method to study in vitro release/transfer of lipophilic payload, which may be useful to estimate the unwanted loss of drug from the liposomal carrier in vivo.  相似文献   

2.
Eucalyptol (Euc) is a natural monoterpene with insecticide effects. Being highly volatile and sensitive to ambient conditions, its encapsulation would enlarge its application. Euc‐loaded conventional liposomes (CL), cyclodextrin/drug inclusion complex, and drug‐in‐cyclodextrin‐in‐liposomes (DCL) are prepared to protect Euc from degradation, reduce its evaporation, and provide its controlled release. The liposomal suspension is freeze‐dried using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as cryoprotectant. The liposomes are characterized before and after freeze‐drying. The effect of Euc on the fluidity of liposomal membrane is also examined. A release study of Euc from delivery systems, in powder and reconstituted forms, is performed by multiple head extraction at 60 °C after 6 months of storage at 4 °C. CL and DCL suspensions are homogeneous, show nanometric vesicles size, spherical shape, and negative surface charge before and after freeze‐drying. Moreover, HP‐β‐CD does not affect the fluidity of liposomes. CL formulations present a weak encapsulation for Euc. The loading capacity of eucalyptol in DCL is 38 times higher than that in CL formulation. In addition, freeze‐dried DCL and HP‐β‐CD/Euc inclusion complex show a higher retention of eucalyptol than CL delivery system. Both carrier systems HP‐β‐CD/Euc and Euc‐loaded DCL decrease Euc evaporation and improve its retention. Practical Applications: Eucalyptol is a natural insecticide. It is highly volatile and poorly soluble in water. To enlarge its application, its encapsulation in three delivery systems (conventional liposomes, cyclodextrin/drug inclusion complex, combined system composed of cyclodextrin inclusion complex and liposome) is studied. In this paper it is proved that cyclodextrin/eucalyptol inclusion complex and eucalyptol‐in‐cyclodextrin‐in‐liposome are effective delivery systems for encalyptol encapsulation, retention, and release.  相似文献   

3.
Liposomes are highly effective nanocarriers for encapsulating and delivering a wide range of therapeutic cargo. While advancements in liposome design have improved several pharmacological characteristics, an important area that would benefit from further progress involves cellular targeting and entry. In this concept article, we will focus on recent progress utilizing strategies including reversible covalent bonding and caging groups to activate liposomal cell entry. These approaches take advantage of advancements that have been made in complementary fields including molecular sensing and chemical biology and direct this technology toward controlling liposome cell delivery properties. The decoration of liposomes with groups including boronic acids and cyclic disulfides is presented as a means for driving delivery through reaction with functional groups on cell surfaces. Additionally, caging groups can be exploited to activate cell delivery only upon encountering a target stimulus. These approaches provide promising new avenues for controlling cell delivery in the development of next-generation liposomal therapeutic nanocarriers.  相似文献   

4.
Clusters of negatively charged liposomes encapsulated with glucose oxidase were prepared in the presence of Ca2+ and used to catalyze the oxidation of glucose in an external loop airlift bubble column. The clusters exhibited higher catalytic activity compared to nonclustered glucose oxidase‐containing liposomes (GOLs) when the liposome membranes were incorporated with cholesterol. The clusters were structurally altered in shear flow to give sufficient interfacial area accessible to glucose. The reactivity of GOL clusters could be modulated on the basis of lipid composition of the membranes which affected the mode of interaction among liposomes through Ca2+. Part of GOL clusters could be separated from the reaction mixture by centrifugation, which would be advantageous for reusing liposomal catalysts. The liposome clusters can be the platforms to regulate the catalytic performance of glucose oxidase in the airlift.  相似文献   

5.
Target-sensitive (TG-S) liposomes having modified antibodies on their surface were employed to study the release of calcein and the selective delivery of the anticancer agents, doxorubicin (DOX) and methotrexate (MTX). The release of calcein from TG-S liposome occurred when the various target cells were contacted with liposomes and it was proportionally increased with the increase of antibody affinity to the target cells. Increasing the concentration of antigen molecules (major histocompatibility, MHC) on the surface of RMA-S, the release of calcein and drugs from TG-S liposomes contacting with RMA-S also rised. The destabilization of TG-S liposomes was only induced above a threshold density of surface antigen on the target cell membrane. The growth inhibition of specific target cells by the liposomal drugs was always stronger than that of the non-specific ones. For specific target cells, the IC50 of liposomal DOX was about 2 times greater than that of free DOX, on the while, for non-specific target cells, more than 5 times. This indicates that the liposomal drugs were transferred preferentially to the specific target cells than the non-specific ones. Based on this phenomenon, the TG-S liposomal MTX were also applied for the selective elimination of the specific target cells in the mixed culture of specific and non-specific target cells.  相似文献   

6.
For decades, clinicians have used liposomes, self-assembled lipid vesicles, as nanoscale systems to deliver encapsulated anthracycline molecules for cancer treatment. The more recent proposition to combine liposomes with nanoparticles remains at the preclinical development stages; however, such hybrid constructs present great opportunities to engineer theranostic nanoscale delivery systems, which can combine simultaneous therapeutic and imaging functions. Many novel nanoparticles of varying chemical compositions are being developed in nanotechnology laboratories, but further chemical modification is often required to make these structures compatible with the biological milieu in vitro and in vivo. Such nanoparticles have shown promise as diagnostic and therapeutic tools and generally offer a large surface area that allows covalent and non-covalent surface functionalization with hydrophilic polymers, therapeutic moieties, and targeting ligands. In most cases, such surface manipulation diminishes the theranostic properties of nanoparticles and makes them less stable. From our perspective, liposomes offer structural features that can make nanoparticles biocompatible and present a clinically proven, versatile platform for further enhancement of the pharmacological and diagnostic efficacy of nanoparticles. In this Account, we describe two examples of liposome-nanoparticle hybrids developed as theranostics: liposome-quantum dot hybrids loaded with a cytotoxic drug (doxorubicin) and artificially enveloped adenoviruses. We incorporated quantum dots into lipid bilayers, which rendered them dispersible in physiological conditions. This overall vesicular structure allowed them to be loaded with doxorubicin molecules. These structures exhibited cytotoxic activity and labeled cells both in vitro and in vivo. In an alternative design, lipid bilayers assembled around non-enveloped viral nanoparticles and altered their infection tropism in vitro and in vivo with no chemical or genetic capsid modifications. Overall, we have attempted to illustrate how alternative strategies to incorporate nanoparticles into liposomal nanostructures can overcome some of the shortcomings of nanoparticles. Such hybrid structures could offer diagnostic and therapeutic combinations suitable for biomedical and even clinical applications.  相似文献   

7.
Glucose oxidase (EC 1.1.3.4) was encapsulated in liposomes (prepared from phosphatidyl choline and cholesterol) by the dehydration–rehydration method. The enzymatic activities of native and liposomal glucose oxidase were followed by the amount of H2O2 obtained in the enzymatic β‐D ‐glucose oxidation. Some characteristics of the liposomal and free glucose oxidase were compared. The enzyme encapsulated in liposomes showed an apparent inhibition by glucose at concentrations higher than 0.28 mol dm?3 with a substrate inhibition constant of 0.95 ± 0.12 mol dm?3. The enzyme entrapped showed an apparent Km value higher than that of the free enzyme. The apparent Vmax of liposomal enzyme decreased by a factor of 0.35 with respect of that of the native enzyme. The optimum temperature of the free and entrapped enzymes remained similar but the liposomal enzyme showed maximal activity at a more acid pH (5.2). The thermal and proteolytic stabilities were enhanced by encapsulation in liposomes. The stabilization factors (relationship between half‐lives of entrapped form and free enzyme) at 45, 50 and 55 °C for liposomal glucose oxidase were 2.6, 1.6 and 1.6, respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Acidity at surface of cancer cells is a hallmark of tumor microenvironments, which does not depend on tumor perfusion, thus it may serve as a general biomarker for targeting tumor cells. We used the pH (low) insertion peptide (pHLIP) for decoration of liposomes and niosomes. pHLIP senses pH at the surface of cancer cells and inserts into the membrane of targeted cells, and brings nanomaterial to close proximity of cellular membrane. DMPC liposomes and Tween 20 or Span 20 niosomes with and without pHLIP in their coating were fully characterized in order to obtain fundamental understanding on nanocarrier features and facilitate the rational design of acidity sensitive nanovectors. The samples stability over time and in presence of serum was demonstrated. The size, ζ-potential, and morphology of nanovectors, as well as their ability to entrap a hydrophilic probe and modulate its release were investigated. pHLIP decorated vesicles could be useful to obtain a prolonged (modified) release of biological active substances for targeting tumors and other acidic diseased tissues.  相似文献   

9.
Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system. The particle size of DSPE-PEI liposomes was 130 ± 10 nm and the zeta potential of liposomes was increased from -25 to 30 mV by the incorporation of cationic PEI onto the liposomal membrane. Intracellular uptake of DSPE-PEI liposomes by tumor cells was 14-fold higher than that of DSPE liposomes. After intratumoral injection of liposomes into tumor-bearing mice, DSPE-PEI liposomes showed higher and sustained localization in tumor tissue compared to DSPE liposomes. Taken together, our findings suggest that DSPE-PEI liposomes have the potential to be used as effective drug carriers for enhanced intracellular uptake and localization of anticancer drugs in tumor tissue through intratumoral injection.  相似文献   

10.
Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20+ lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.  相似文献   

11.
Alkannin and shikonin are naturally occurring hydroxynaphthoquinones with a well‐established spectrum of wound healing, antimicrobial, anti‐inflammatory, and antioxidant activities. Recently, extensive scientific effort has been focused on their effectiveness on several tumors and mechanism(s) of antitumor activity. Liposomes have been proved as adequate drug carriers offering significant advantages over conventional formulations, such as controlled release and targeted drug delivery, leading to the appearance of several liposomal formulations in the market, some of them concerning anticancer drugs. The aim of the present study was to prepare shikonin‐loaded liposomes for the first time in order to enhance shikonin therapeutic index. An optimized technique based on the thin film hydration method was developed and liposomes characterization was performed in terms of their physicochemical characteristics, drug entrapment efficiency, and release profile. Results indicated the successful incorporation of shikonin into liposomes, using both 1,2‐dipalmitoylphosphatidylcholine and egg phosphatidylcholine lipids. Liposomes presented good physicochemical characteristics, high entrapment efficiency and satisfactory in vitro release profile. In vitro cytotoxicity of liposomes was additionally tested against three human cancer cell lines (breast, glioma, and non‐small cell lung cancer) showing a moderate growth inhibitory activity. Practical applications: Shikonin is a naturally occurring hydroxynaphthoquinone and extensive scientific research (in vitro, in vivo, and clinical trials) has been conducted during the last years, focusing on its effectiveness on several tumors and mechanism(s) of antitumor action. The purpose of this work was to prepare and characterize shikonin‐loaded liposomes as a new drug delivery system for shikonin. Liposomal formulations provide significant advantages over conventional dosage forms, such as controlled release and targeted drug delivery for anticancer agents. Thus, liposomes could reduce shikonin's side effects, enhance selectivity to cancer cells and protect shikonin from internal biotransformations and instability matters (oxidization and polymerization). Furthermore, liposomal delivery helps overcome the low aqueous solubility of shikonin, which is the major barrier to its oral and internal administration, since it cannot be dissolved and further absorbed from the receptor.  相似文献   

12.
We examined changes in membrane properties upon acidification of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes and evaluated their potential to deliver entrapped tracers in cultured macrophages. Membrane permeability was determined by the release of entrapped calcein or hydroxypyrene-1,3,6-trisulfonic acid (HPTS)-p-xylene-bis-pyridinium bromide (DPX); membrane fusion, by measuring the change in size of the liposomes and the dequenching of octadecylrhodamine-B fluorescence; and change in lipid organization, by31P nuclear magnetic resonance spectroscopy. Measurement of cell-associated fluorescence and confocal microscopy examination were made on cells incubated with liposomes loaded with HPTS or HPTS-DPX. The biophysical studies showed (i) a lipid reorganization from bilayer to hexagonal phase progressing from pH 8.0 to 5.0, (ii) a membrane permeabilization for pH<6.5, (iii) an increase in the mean diameter of liposomes for pH<6.0, and (iv) a mixing of liposome membranes for pH<5.7. The cellular studies showed (i) an uptake of the liposomes that were brought from pH 7.5–7.0 to 6.5–6.0 and (ii) a release of ∼15% of the endocytosed marker associated with its partial release from the vesicles (diffuse localization). We conclude that the permeabilization and fusion of pH-sensitive liposomes occur as a consequence of a progressive lipid reorganization upon acidification. These changes may develop intracellular after phagocytosis and allow for the release of the liposome content in endosomes associated with a redistribution in the cytosol.  相似文献   

13.
Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.  相似文献   

14.
Jo SM  Lee HY  Kim JC 《Lipids》2008,43(10):937-943
Glucose-sensitive liposomes were prepared by incorporating hydrophobically modified glucose oxidase (EC 1.1.3.4.) into the liposomal bilayer of dioleoylphosphatidylethanolamine and cholesteryl hemisuccinate. For the release test, calcein, a fluorescence marker, was entrapped in the liposomes. The liposomes were stable under neutral conditions in terms of calcein release but an extensive release was observed under acidic conditions. In the experiment of glucose concentration-dependent calcein release, no release was observed for 180 min when the suspension of liposome was free of glucose. With a glucose concentration of 50 mg/dL, no appreciable amount of calcein was released for the first 20 min, and then the release rate was accelerated. At 200 mg/dL glucose concentration which is diagnostic and indicative for insulin-dependent diabetes, the lag time of calcein release became shorter and a faster response was obtained. When glucose concentration further increased to 400 mg/dL, the calcein release rate and the degree of release in 180 min were almost the same as the values when the glucose concentration was 200 mg/dL. The glucose concentration-dependent release is due to pH change, since the suspension of liposomes became acidic during the release experiments.  相似文献   

15.
Cationic liposomes (CLs) can accumulate in tumor vascular endothelial cells (VECs) to show high selective targeting ability. Therefore, chemotherapeutic agent‐loaded CLs are considered as new therapeutic vehicles to enhance the treatment efficacy. This study investigated the effect of N‐trimethyl chitosan (TMC), one of derivatives of chitosan with positive charge determined by its degree of quaternization (DQ), on preparing doxorubicin (DOX)‐loaded CLs. TMCs with various DQ, i.e., 20% (TMC20), 40% (TMC40), and 60% (TMC60) were synthesized and characterized by 1HNMR. DOX‐loaded liposomes (DOXL) were prepared by ammonium sulfate gradients followed by TMC‐coating to obtain TMC‐coated DOXL with various positive surface charges. The morphology, size, ζ‐potential and drug release in vitro of TMC‐coated DOXL were studied compared with those of DOXL. Human umbilical vein endothelial cells (HUVECs) as cell model, the vascular targeting ability of TMC‐coated DOXL was evaluated in vitro. A solid tumor, formed by implantationmurine hepatoma cells (H22) into mice, as tumor model, the tumor inhibition rate and tumor histological sections stained by HE of TMC‐coated DOXL group were researched compared with those of free DOX and DOXL group. It was found that with the increase of TMC's DQ, the positive surface charge of TMC‐coated DOXL was enhanced accordingly, which had little effect on DOX release in vitro while led to the significant increase of DOX uptake by HUVECs in vitro and the treatment effect on solid tumor in vivo. Especially, TMC‐coated DOXL showed better targeting ability to the nuclei compared with free DOX and DOXL, which could further enhance the efficacy of DOX in vivo. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The role of macrophages in the uptake and processing of liposomes evident from the increased deposition of liposomal content in cells. It has been reported that macrophages may serve as a secondary drug carrier for the delivery of liposomal drugs. The uptake of liposomal content by macrophages can be promoted by incorporation of ligands capable of interacting with macrophage surface receptors. Therefore, carbohydrate‐based molecules for targeted drug and gene delivery must be developed for rational therapy. In this article, we report the synthesis of glycolipid conjugates for applications in liposomal drug delivery systems and for targeting drugs and genes to receptors.  相似文献   

17.
为了研究对温度敏感的双亲性共聚物包覆的脂质体的温控释放行为,合成了N-异丙基丙烯酰胺(NIPAM)和丙烯酸十八酯(ODA)的共聚物。利用荧光探针法研究了共聚物水溶液随温度升高时出现的LCST现象,表明该高分子在温度升高到30℃以上时存在着明显的相分离行为。  相似文献   

18.
The majority of clinically approved anticancer drugs are characterized by a narrow therapeutic window that results mainly from a high systemic toxicity of the drugs in combination with an evident lack of tumor selectivity. Besides the development of suitable galenic formulations such as liposomes or micelles, several promising prodrug approaches have been followed in the last decades with the aim of improving chemotherapy. In this review we elucidate the two main concepts that underlie the design of most anticancer prodrugs: drug targeting and controlled release of the drug at the tumor site. Consequently, active and passive targeting using tumor-specific ligands or macromolecular carriers are discussed as well as release strategies that are based on tumor-specific characteristics such as low pH or the expression of tumor-associated enzymes. Furthermore, other strategies such as ADEPT (antibody-directed enzyme prodrug therapy) and the design of self-eliminating structures are introduced. Chemical realization of prodrug approaches is illustrated by drug candidates that have or may have clinical importance.  相似文献   

19.
脂质体的制备,检测及其在化妆品中的应用研究   总被引:11,自引:0,他引:11  
脂质体是目前医药界与化妆品界的研究热点之一,它是一种生物载体,加载活性成分的脂质体对治疗疾病与皮肤护理都非常有效。我们采用高压均质技术制备出符合粒径要求的脂质体,并用负染及冰冻蚀刻-电子显微镜法证明了脂质体的存在,从颗粒度和显微结构着手研究了它的稳定性,并测出它对水溶性物质的包封率,最终把脂质体应用于化妆品中。  相似文献   

20.
多肽型阳离子脂质体作为一种重要的非病毒基因载体,克服了其他阳离子脂质体转染效率低、具有一定细胞毒性的缺点,在基因转运方面具有广阔的应用前景。在近年来多肽型阳离子脂质体研究的基础上,论述了多肽型阳离子脂质体在类脂的结构设计、脂质体制备及其在基因转运方面应用的研究现状,展望了多肽型阳离子脂质体的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号