首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
小麦胚乳细胞的分离及其淀粉体的计数   总被引:13,自引:1,他引:12  
IsolationofEndosPermCellsandCalculationofTheirStarchGrainsinWheatPlants小麦胚乳重量占籽粒重的90/以上.胚乳细胞的分裂数目及其淀粉体的发育状况决定着籽粒的重量和品质卜‘。在胚乳细胞增殖期,如能增加胚乳细胞的分裂速度.就能增加产量k‘.因而分离胚乳细胞,观察胚乳细胞的发育技术与方法受到人们的重视)-’‘’。前人对胚乳细胞的计数大致有以下几种方法:()根据胚乳体积与胚乳细胞体积之比推算”‘;(2)用纤维素酶分解胚乳.计数单位酶液中的细胞数)‘’;(3)先用纤维素分解胚乳后再用淀粉酶解离细胞中的淀粉.…  相似文献   

2.
蔗糖代谢为水稻胚乳发育提供物质和能量。为明确二者的量化关系,本研究通过调节源库关系获得不同源供应水平下的代表性粒位籽粒,进而分析了蔗糖、果糖、葡萄糖及可溶性总糖的含量与胚乳细胞增殖的关系。结果表明,改变品种的源库比例(源大库小),下部粒位籽粒胚乳细胞数目明显增加,总体上,可溶性总糖含量与细胞数目呈极显著负相关,与细胞增殖速率呈极显著正相关,高的蔗糖/葡萄糖、蔗糖/果糖有利于胚乳细胞数目增多。在细胞增殖前期(花后5d),高葡萄糖、己糖含量有利于提高胚乳细胞数目,高葡萄糖含量还可提高细胞增殖速率。细胞增殖中后期(花后7d),蔗糖、果糖和葡萄糖含量与胚乳细胞数目、增殖速率呈显著负相关。  相似文献   

3.
长喙毛茛泽泻胚中营养物质的积累与消耗   总被引:2,自引:0,他引:2  
长喙毛茛泽泻是一种水生濒危植物。它的种子中没有胚乳,营养物质以淀粉和帽白体的形式贮藏在胚中。胚不同部位物质积累情况差异较大,下胚轴和子地细胞中的淀粉,蛋白体数目多,体积大,胚芽和胚根分生细胞中只贮藏有少量的淀粉粒和蛋白体。  相似文献   

4.
三种粒型小麦品种胚乳细胞增殖动态研究   总被引:3,自引:0,他引:3  
以三种粒型小麦品种(系)为材料,观察了不同品种和同一品种不同粒位籽粒胚乳细胞增殖动态。结果表明,用Richards方程能较好地模拟胚乳细胞增殖动态。强势粒胚乳细胞分裂起始势高,达到最高增殖速率的时间短,活跃分裂期长,可分裂出更多的胚乳细胞。弱势粒胚乳细胞增殖起始势低,细胞分裂速率变化缓慢,其最终胚乳细胞数显著低于强势拉。不同品种间胚乳细胞数有一定的差异,表现为大粒饱满品种(鄂思1号)>不饱满品系(95A-10)>小粒饱满品种(华麦8号)。胚乳细胞增殖速率变化为单峰曲线,强势粒胚乳细胞增殖速率曲线偏左,弱势粒胚乳细胞增殖速率曲线偏右。  相似文献   

5.
水稻淀粉胚乳程序性细胞死亡中的去核化   总被引:1,自引:0,他引:1  
对水稻品种中籼8836淀粉胚乳细胞的去核化发育阶段的细胞超微结构变化和同期籽粒灌浆速率及相关酶活性的动态进行了观察和分析。开花受精后约在第3天胚乳完成细胞化,花后第5天少数淀粉胚乳细胞启动去核发育过程。核消亡是淀粉胚乳细胞程序性细胞死亡(PCD)的第一步。同一籽粒淀粉胚乳细胞的去核进程是不同步的。花后第13天所有淀粉胚乳细胞都已完成去核过程。在去核过程中,胚乳核的形态变化特征既有动植物PCD的共性又有其特殊性。伴随核降解过程,一部分线粒体解体,表明去核化与线粒体解体有一定联系。在去核化发育阶段,与PCD有关的酶类,如超氧化物歧化酶(SOD)过氧化氢酶(CAT)活性非常高;与淀粉合成有关的酶类,如ADPG焦磷酸化酶、可溶性淀粉合成酶(SSS酶)、淀粉分支酶(或Q酶)也表现出很高的活性。去核化发育阶段籽粒灌浆速率最高,籽粒增重亦最快。淀粉胚乳细胞去核之后,细胞并未立即死亡,这些无核的细胞仍维持正常有序的代谢活动,继续进行淀粉和贮藏蛋白的合成与积累,但上述酶类的活性明显降低,灌浆速率也明显趋缓。淀粉胚乳细胞最终被贮藏物质充满时成为死细胞,完成其程序性死亡过程。Evan’s blue染色鉴定表明淀粉胚乳细胞死亡不同步,细胞死亡在淀粉胚乳组织中是随机发生的。  相似文献   

6.
水稻淀粉胚乳程序性细胞死亡中的去核化   总被引:6,自引:0,他引:6  
对水稻品种中籼8836淀粉胚乳细胞的去核化发育阶段的细胞超微结构变化和同期籽粒灌浆速率及相关酶活性的动态进行了观察和分析。开花受精后约在第3天胚乳完成细胞化,花后第5天少数淀粉胚乳细胞启动去核发育过程。核消亡是淀粉胚乳细胞程序性细胞死亡(PCD)的第一步。同一籽粒淀粉胚乳细胞的去核进程是不同步的。花后第13天所有淀粉胚乳细胞都已完成去核过程。在去核过程中,胚乳核的形态变化特征既有动植物PCD的共性又有其特殊性。伴随核降解过程,一部分线粒体解体,表明去核化与线粒体解体有一定联系。在去核化发育阶段,与PCD有关的酶类,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性非常高;与淀粉合成有关的酶类,如ADPG焦磷酸化酶、可溶性淀粉合成酶(SSS酶)、淀粉分支酶(或Q酶)也表现出很高的活性。去核化发育阶段籽粒灌浆速率最高,籽粒增重亦最快。淀粉胚乳细胞去核之后,细胞并未立即死亡,这些无核的细胞仍维持正常有序的代谢活动,继续进行淀粉和贮藏蛋白的合成与积累,但上述酶类的活性明显降低,灌浆速率也明显趋缓。淀粉胚乳细胞最终被贮藏物质充满时成为死细胞,完成其程序性死亡过程。Evan‘s blue染色鉴定表明淀粉胚乳细胞死亡不同步,细胞死亡在淀粉胚乳组织中是随机发生的。  相似文献   

7.
旨在构建TOX3基因RNAi慢病毒载体并观察其对人乳腺癌ZR-75-1细胞增殖能力的影响。针对TOX3基因设计干扰靶序列,构建载体,测序正确后进行慢病毒包装及滴度测定。转染ZR-75-1细胞,荧光显微镜下观察表达GFP的细胞数目,实时荧光定量PCR及Western blot实验验证转染后ZR-75-1细胞中TOX3 mRNA和蛋白的表达。MTT及平板单克隆实验检测TOX3对ZR-75-1细胞增殖能力的影响。结果显示,各组载体序列正确,病毒滴度均2×108 TU/mL,表达GFP细胞数目均可达95%以上。各干扰组TOX3 mRNA及蛋白表达水平均降低,其中TOX3-shRNA-3组干扰效果最佳,转染后ZR-75-1细胞的增殖和单克隆形成能力下降。成功构建TOX3基因的RNAi慢病毒载体,沉默TOX3后ZR-75-1细胞的增殖能力下降。  相似文献   

8.
小麦淀粉胚乳发育期间的程序性细胞死亡   总被引:5,自引:0,他引:5  
小麦淀粉胚乳在发育过程中经历程序性细胞死亡(PCD).小麦淀粉胚乳的DNA在发育的特定阶段呈现梯状电泳条带,用乙烯处理使DNA片段化发生的时间提前,而且ABA处理虽然不能推迟DNA片段化的发生时间,但能减弱DNA片段化的程度.小麦淀粉胚乳细胞在PCD过程中出现某些动植物细胞凋亡的共同的结构变化特征,但也有一些独特的结构变化.如染色质凝聚后仅少数染色质块发生趋边化;细胞核在PCD过程中最先开始衰退,细胞核解体时胞质中有丰富的细胞器,细胞核解体后细胞并未死亡,在胞质中仍在合成和积累淀粉和储藏蛋白,直到细胞被淀粉充满,细胞才死亡;不形成凋亡小体,死亡的淀粉胚乳细胞成为营养物质的储藏库.因此小麦淀粉胚乳细胞的PCD是一种特殊形式的PCD.  相似文献   

9.
多胞质玉米胚乳淀粉粒性状的扫描电镜观察   总被引:8,自引:0,他引:8  
李敬玲  贾敬鸾 《遗传学报》1999,26(3):249-253
11种多胞质系玉米胚乳淀粉粒的扫描电镜观察表明:不同的细胞质对细胞核有不同程度的互作,3种甜质胞质玉米的胚乳淀粉粒多呈球形,排列紧密,存在一定的共性;4种雄性不育胞质玉米的胚乳淀粉粒多呈不规则形,除(T)Mo17外,排列疏松。这11种玉米胚乳淀粉粒的平均直径为9.78μm ̄14.69μm,通过玉米胚乳淀粉粒形态特征的观察,在玉米淀粉性状和玉米籽粒的商品价值关系上进行一定程度探索,为玉米的进一步发展  相似文献   

10.
水稻淀粉胚乳细胞编程性死亡中细胞核变化特征   总被引:7,自引:0,他引:7  
应用透射电子显微镜技术 ,观察了水稻 (OryzasativaL .)淀粉胚乳细胞编程性死亡过程中核的变化特征。伴随胚乳的发育进程 ,淀粉胚乳细胞核表现出衰退特征 :核变形、染色质凝缩、核膜多处被降解破坏、核基质外泄等。DNALadder显示核内大片段DNA呈严重的弥散状拖尾现象 ,而核内和胞质中在 14 0~ 180bp处有明显的条带。在核衰退的同时 ,其胞质中的粗面内质网、淀粉质体和线粒体等细胞器具有正常的代谢功能 ,细胞仍在合成并积累营养物质 ,淀粉胚乳细胞一边衰退一边行使其功能 ,直至死亡。这些结果表明 ,水稻淀粉胚乳在核衰退的同时 ,细胞仍在积极合成与积累贮藏产物 ,表现为一种特殊形式的植物细胞编程性死亡现象。此外 ,对淀粉胚乳细胞特有的核质关系、植物细胞编程性死亡过程中细胞核的变化等问题进行了讨论。  相似文献   

11.
Endosperm development was studied in normally setting flowersand pods of soybean from anthesis to a pod length of 10–20mm. The free-nuclear stage following double fertilization istypified by loss of starch and increasing vacuolation. The cytoplasmprovides evidence of extensive metabolic activity. Wall ingrowths,already present at the micropylar end of the embryo sac wallprior to fertilization, develop along the lateral wall of thecentral cell as well as at the chalazal endosperm haustorium.Endosperm cellularization begins when the embryo has developeda distinct globular embryo proper and suspensor. Cellularizationstarts at the micropylar end of the embryo sac as a series ofantidinal walls projecting into the endosperm cytoplasm fromthe wall of the central cell. The free, growing ends of thesewalls are associated with vesicles, microtubules, and endoplasrnicreticulum. Pendinal walls that complete the compartmentalizalionof portions of the endosperm cytoplasm are initiated as cellplates formed during continued mitosis of the endosperm nuclei.Endosperm cell walls are traversed by plasmodesmata. This studywill provide a basis for comparison with endosperin from soybeanflowers programmed to abscise. Glycine max, soybean, endosperm, ovules  相似文献   

12.
The paper reports studies, including histological and ultrastructural analyses, of in vitro cell proliferation and development of immature endosperm tissue isolated from caryopses of Triticum aestivum, Triticum durum, and Triticosecale plants. Endosperm isolated at 7–10 days post-anthesis developed well on MS medium supplemented with auxins and/or cytokinins. The efficiency of endosperm response was highly genotype-dependent and best in two winter cultivars of hexaploid species. The pathways of development and proliferation were very similar among the selected species and cultivars. Histological and scanning electron microscope (SEM) analysis revealed that only the part of the endosperm not touching the medium surface continued growth and development, resulting in swelling. The central part of swollen regions was composed mainly of cells containing many large starch grains. The peripheric parts of developed endosperm consisted of highly vacuolated cells and small cells with dense cytoplasm. SEM showed that cells from the swollen region were covered partially with a membraneous structure. Transmission electron microscope studies of cells from the outer part of the developing region showed features typical for cell activity connected with lipid metabolism.  相似文献   

13.
An in vitro continuous endosperm callus culture derived from developing endosperm of transformation-amenable maize Hi-II genotype was obtained. The endosperm callus was composed of cells that differentiated into aleurone-like and starchy endosperm-like cell types. This callus has been maintained for 4?yr. Endosperm callus cells transcribe and produce zein proteins at a level similar to developing endosperm tissue. Starchy endosperm cells of the endosperm callus displayed active starch biosynthetic activity. The dual cell physiology of this culture limited the utility of the cell line for promoter analysis and transient assays of gene expression in the current culture conditions. However, because such cell line can be readily initiated and easily maintained for a long period of time, it provides an alternative tool for analysis of transgene expression in endosperm callus derived from transgenic maize lines in Hi-II background.  相似文献   

14.
This study employed in vitro seed culture to determine how C and N supply influence the growth (i.e. starch accumulation) and protein composition of maize (Zea mays L.) endosperm. Immature kernels were grown to maturity on liquid medium containing various concentrations of C (sucrose at 234 millimolar [low] and 468 millimolar [high]) and N (amino acid mixture ranging in N from 0 to 144 millimolar). Low C supply limited starch, but not N, accumulation in the endosperm. With high C, endosperm starch and protein content increased concomitantly as N supply increased from 0 to 13.4 millimolar. Endosperm growth was unaffected by additional N until concentrations exceeding approximately 72 millimolar reduced starch accumulation. A similar inhibition of starch deposition occurred with lower N concentrations when kernels were grown with low C. Endosperm total N content reached a point of saturation with approximately 36 millimolar N in the medium, regardless of C supply. Zein synthesis in the endosperm responded positively across all N levels, while glutelin content remained static and albumin/globulin proteins were reduced in amount when N supply was greater than 36 millimolar. A reciprocal, inverse relationship was observed in mature endosperm tissue between the concentrations of free amino acids and soluble sugars. Our data suggest that under N stress starch and protein accumulation in the endosperm are interdependent, at least in appearance, but are independent otherwise.  相似文献   

15.
PARKER  M. L. 《Annals of botany》1981,47(2):181-186
Endosperm tissue of mature kernels of rye (Secale cereale L.)cv. Dominant was examined by light and transmission electronmicroscopy. It was found that storage protein in sub-aleuronecells occupies up to 35 per cent of the cell volume and formsa continuous matrix in which starch grains and cytoplasmic remnantsare embedded. In the prismatic endosperm, the storage proteinis present as a fine network interspersed between the numeroustype A and B starch grains. Protein bodies are not found inthe prismatic endosperm; only a few, less than 1 µm indiameter, are observed in pockets of disorganized cytoplasmin the sub-aleurone tissue. Thick cell walls and intercellularmaterial may contribute to the high pentosan content of ryeendosperm. Secale cereale L., rye, endosperm, protein matrix, ultrastructure  相似文献   

16.
The response of developing maize (Zea mays L.) endosperm to elevated levels of abscisic acid (ABA) was investigated. Maize kernels and subtending cob sections were excised at 5 days after pollination (DAP) and placed in culture with or without 90 micromolar (±)-ABA in the medium. A decreased number of cells per endosperm was observed at 10 DAP (and later sampling times) in kernels cultured in medium containing ABA from 5 DAP, and in kernels transferred at 8 DAP to medium containing ABA, but not in kernels transferred at 11 DAP to medium containing ABA. The number of starch granules per endosperm was decreased in some treatments, but the reduction, when apparent, was comparable to the decreased number of endosperm cells. The effect on endosperm fresh weight was slight, transient, and appeared to be secondary to the effect on cell number. Mature endosperm dry weight was reduced when kernels were cultured continuously in medium containing ABA. Endosperm (+)-ABA content of kernels cultured in 0, 3, 10, 30, 100, or 300 micromolar (±)-ABA was measured at 10 DAP by indirect ELISA using a monoclonal antibody. Content of (+)-ABA in endosperms correlated negatively (R = −0.92) with endosperm cell number. On the basis of these studies we propose that during early kernel development, elevated levels of ABA decrease the rate of cell division in maize endosperm which, in turn, could limit the storage capacity of the kernel.  相似文献   

17.
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel.  相似文献   

18.
J. V. Jacobsen  E. Pressman 《Planta》1979,144(3):241-248
Germination of celery seed occurred after 6 d of imbibition in light. During this time the embryo enlarged at the expense of the adjacent endosperm cells and at the time of germination was 2–3 times as long as in the dry seed. Breakdown of the endosperm cells near the root cap preceeded radicle emergence. None of these changes occurred in darkness.Endosperm digestion began adjacent to the embryo and spread radially. In degrading cells, the aleurone grains often became larger and fewer in number. The cell walls were modified and appeared to undergo partial degradation. Ultimately the cells seemed to lose their contents. In cells adjacent to the root cap, similar changes occurred except there was a transient appearance of starch grains. Radial progression of endosperm breakdown also occurred in isolated endosperm treated with gibberellin A4+7.The results indicate that (1) the stimulus for breakdown of celery endosperm emanates from the embryo in response to light; (2) the stimulus may be a gibberellin because changes in endosperm cells and the sequence of endosperm digestion during germination resemble the responses of isolated endosperm to gibberellin; and (3) the radial progression of endosperm breakdown during germination may be the result of a sequential response of cells to a uniformly applied stimulus rather than the result of gradual embryo expansion.  相似文献   

19.
Nuclear DNA content was measured in developing endosperm cellsof two wheat varieties, Chinese Spring and Spica. 3C, 6C, 12Cand 24C nuclei were detected, indicating that some form of endoreduplicationand/or endopolyploidization was occurring. The total amountof DNA in the endosperm continued to increase until 24 dayspost anthesis. This accumulation of DNA resulted both from productionof new nuclei and also from increases in the DNA content ofexisting nuclei. Estimates of endosperm cell numbers were made from the totalDNA content per endosperm and the mean DNA content per endospermnucleus for a range of genotypes differing in mature grain weight.Endosperm DNA content and cell number were both positively associatedwith mature grain weight among the genotypes examined. However,not all of the variation in grain weight could be attributedto variation in cell number because of differences in mean dryweight per endosperm cell. The large-grained variety, Spica, had a greater mean weightper endosperm cell than Chinese Spring and this difference aroseafter cell production in the endosperm had ceased. Triticum aestivum, grain weight, cell size, cell number, DNA content  相似文献   

20.
BACKGROUND AND AIMS: High night temperatures are more harmful to grain weight in rice than high day temperatures. Grain growth rate and growth duration were investigated to determine which was the cause of the decrease in final grain weight under high night temperatures. Endosperm cell number and cell sizes were also examined to determine which might cause the decrease in final grain weight. METHODS: Rice plants were grown outdoors in plastic pots and moved at heading time to three temperature-controlled glasshouses under high night temperature (HNT; 22/34 degrees C), high day temperature (HDT; 34/22 degrees C) and control conditions (CONT; 22/22 degrees C). Grains were sampled periodically, and the time-course of grain growth was divided into rate and duration by logistic regression analysis. Endosperm cell numbers and cell sizes were analysed by digitalized hand-tracing images of endosperm cross-sections. KEY RESULTS: The duration of grain growth was reduced by high temperature both day and night. However, the rate of grain growth was lower in HNT than in HDT. The number of cells in endosperm cross-sections in HNT was similar to that in HDT, and higher than that in CONT. The average cell area was smaller in HNT than in either CONT or HDT. The differences in average cell areas between HNT and HDT were greater at distances 60-80 % from the central point of endosperm towards the endosperm surface. CONCLUSIONS: The results show that HNT compared with HDT reduced the final grain weight by a reduction in grain growth rate in the early or middle stages of grain filling, and also reduced cell size midway between the central point and the surface of endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号