首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu LP  Wang X  Li L  Zhao Y  Lu S  Yu Y  Zhou W  Liu X  Yang J  Zheng Z  Zhang H  Feng J  Yang Y  Wang H  Zhu WG 《Molecular and cellular biology》2008,28(10):3219-3235
Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes' promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1alpha and HP1beta) to methylated H3K9 and binding of DNMT1 to these genes' promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes' promoter.  相似文献   

2.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

3.
4.
5.
6.
Valproate induces replication-independent active DNA demethylation   总被引:19,自引:0,他引:19  
In this report, we demonstrate that valproic acid (VPA), a drug that has been used for decades in the treatment of epilepsy and as a mood stabilizer, triggers replication-independent active demethylation of DNA. Thus, this drug can potentially reverse DNA methylation patterns and erase stable methylation imprints on DNA in non-dividing cells. Recent discoveries support a role for VPA in the regulation of methylated genes; however, the mechanism has been unclear because it is difficult to dissociate active demethylation from the absence of DNA methylation during DNA synthesis. We therefore took advantage of an assay that measures active DNA demethylation independently from other DNA methylation and DNA replication activities in human embryonal kidney 293 cells. We show that VPA induces histone acetylation, DNA demethylation, and expression of an ectopically methylated CMV-GFP plasmid in a dose-dependent manner. In contrast, valpromide, an analogue of VPA that does not induce histone acetylation, does not induce demethylation or expression of CMV-GFP. Furthermore, we illustrate that methylated DNA-binding protein 2/DNA demethylase (MBD2/dMTase) participates in this reaction since antisense knockdown of MBD2/dMTase attenuates VPA-induced demethylation. Taken together, our data support a new mechanism of action for VPA as enhancing intracellular demethylase activity through its effects on histone acetylation and raises the possibility that DNA methylation is reversible independent of DNA replication by commonly prescribed drugs.  相似文献   

7.
8.
《Epigenetics》2013,8(11):1315-1330
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.  相似文献   

9.
10.
11.
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.  相似文献   

12.
13.
Osteogenesis is a complex process associated with dramatic changes in gene expression. To elucidate whether modifications in chromatin structure are involved in osteoblast differentiation, we examined the expression levels of histone deacetylases (HDACs) and the degree of histone acetylation at the promoter regions of osteogenic genes. During osteogenesis, total HDAC enzymatic activity was decreased with significant reduction in HDAC1 expression. Consistently, recruitment of HDAC1 to the promoters of osteoblast marker genes, including osterix and osteocalcin, was down-regulated, whereas histone H3 and H4 were hyperacetylated at those promoters during osteoblast differentiation. Moreover, suppression of HDAC activity with a HDAC inhibitor, sodium butyrate, accelerated osteogenesis by inducing osteoblast marker genes including osteopontin and alkaline phosphatase. Consistently, knockdown of HDAC1 by the short interference RNA system stimulated osteoblast differentiation. Taken together, these data propose that down-regulation of HDAC1 is an important process for osteogenesis.  相似文献   

14.
15.
16.
17.
18.
19.
Expression of glycosyltransferase genes is essential for glycosylation. However, the detailed mechanisms of how glycosyltransferase gene expression is regulated in a specific tissue or during disease progression are poorly understood. In particular, epigenetic studies of glycosyltransferase genes are limited, although epigenetic mechanisms, such as histone and DNA modifications, are central to establish tissue-specific gene expression. We previously found that epigenetic histone activation is essential for brain-specific expression of N-acetylglucosaminyltransferase-IX (GnT-IX, also designated GnT-Vb), but the mechanism of brain-specific chromatin activation around GnT-IX gene (Mgat5b) has not been clarified. To reveal the mechanisms regulating the chromatin surrounding GnT-IX, we have investigated the epigenetic factors that are specifically involved with the mouse GnT-IX locus by comparing their involvement with other glycosyltransferase loci. We first found that a histone deacetylase (HDAC) inhibitor enhanced the expression of GnT-IX but not of other glycosyltransferases tested. By overexpression and knockdown of a series of HDACs, we found that HDAC11 silenced GnT-IX. We also identified the O-GlcNAc transferase (OGT) and ten-eleven translocation-3 (TET3) complex as a specific chromatin activator of GnT-IX gene. Moreover, chromatin immunoprecipitation (ChIP) analysis in combination with OGT or TET3 knockdown showed that this OGT-TET3 complex facilitates the binding of a potent transactivator, NeuroD1, to the GnT-IX promoter, suggesting that epigenetic chromatin activation by the OGT-TET3 complex is a prerequisite for the efficient binding of NeuroD1. These results reveal a new epigenetic mechanism of brain-specific GnT-IX expression regulated by defined chromatin modifiers, providing new insights into the tissue-specific expression of glycosyltransferases.  相似文献   

20.
真核生物基因表达受到染色质结构的调控,组蛋白与DNA的共价修饰构成表观遗传标签,并在植物胁迫应答如防御病原菌侵染过程中起重要作用.病原菌侵染可引起基因组整体DNA甲基化模式变化及胁迫应答基因的位点特异性去甲基化,导致植物抗性基因表达上调或下调,并进一步调控植物对病原菌的胁迫应答;组蛋白去乙酰化酶HDAC通过茉莉酸途径增强植物对病原菌的胁迫应答;此外,染色质重塑复合物Swr1复合体通过识别DNA基元和组蛋白乙酰化修饰状态靶向基因启动子,负调控SA敏感基因.该文从DNA甲基化、组蛋白乙酰化、甲基化修饰,染色质重塑等方面着重阐述植物与病原菌互作过程中发生的主要事件的分子基础及其研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号