首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Human calcium oxalate (CaOx) nephrolithiasis may occur if urine is supersaturated with respect to the solid-phase CaOx. In these patients, dietary oxalate is often restricted to reduce its absorption and subsequent excretion in an effort to lower supersaturation and to decrease stone formation. However, dietary oxalate also binds intestinal calcium which lowers calcium absorption and excretion. The effect of increasing dietary oxalate on urinary CaOx supersaturation is difficult to predict. METHODS: To determine the effect of dietary oxalate intake on urinary supersaturation with respect to CaOx and brushite (CaHPO4), we fed 36th and 37th generation genetic hypercalciuric rats a normal Ca diet (1.2% Ca) alone or with sodium oxalate added at 0.5%, 1.0%, or 2.0% for a total of 18 weeks. We measured urinary ion excretion and calculated supersaturation with respect to the CaOx and CaHPO4 solid phases and determined the type of stones formed. RESULTS: Increasing dietary oxalate from 0% to 2.0% significantly increased urinary oxalate and decreased urinary calcium excretion, the latter presumably due to increased dietary oxalate-binding intestinal calcium. Increasing dietary oxalate from 0% to 2.0% decreased CaOx supersaturation due to the decrease in urinary calcium offsetting the increase in urinary oxalate and the decreased CaHPO4 supersaturation. Each rat in each group formed stones. Scanning electron microscopy revealed discrete stones and not nephrocalcinosis. X-ray and electron diffraction and x-ray microanalysis revealed that the stones were composed of calcium and phosphate; there were no CaOx stones. CONCLUSION: Thus, increasing dietary oxalate led to a decrease in CaOx and CaHPO4 supersaturation and did not alter the universal stone formation found in these rats, nor the type of stones formed. These results suggest the necessity for human studies aimed at determining the role, if any, of limiting oxalate intake to prevent recurrence of CaOx nephrolithiasis.  相似文献   

2.
Stone and urine composition were analysed in 75 men and 40 women with recurrent calcium oxalate stone disease (group R) and in 48 men and 19 women who had formed only one calcium-oxalate-containing stone (group S). Patients who had developed stones with a large fraction of calcium phosphate were significantly more frequent in group R than in group S. There was furthermore a higher excretion of calcium and higher calcium oxalate supersaturation levels in patients with stones containing more than 25% calcium phosphate. It was concluded from these observations that the calcium phosphate content of renal stones might be a useful factor in predicting the future course of the disease.  相似文献   

3.
There is an urgent need for drugs capable of inhibiting renal calcifications, nephrocalcinosis and stones included, in humans. Current anticalcification medication is based mainly on alkalinization of the metabolism using potassium-containing citrate alone, despite the fact that calcium stone patients suffer marginally from both magnesium and potassium deficiency. We investigated the anticalcification efficacy of oral potassium citrate versus the combined administration of this drug and magnesium citrate in the magnesium-deficient rat developing corticomedullary nephrocalcinosis and luminal microliths in the long term. Among other things we employed specific stains for calcium and oxalate, light microscopy and element analysis for renal tissue and calcifications, respectively. In addition, minerals in renal tissue, urine and plasma were determined, as well as the state of extracellular calcium homeostasis. Magnesium deficiency caused pure calcium phosphate tissue deposits, containing no magnesium, but no deposition of calcium oxalate in the tubular lumen; tissue magnesium, calcium and phosphorus were increased, and there was marked potassium wastage via urine; despite mild hypercalcemia other signs of hyperparathyroidism were not found. Alkalinization with the two kinds of medication evoked an increase in urinary pH, citrate, and potassium; however, potassium citrate alone tended to aggravate renal concretions, whereas the combination of this drug with magnesium citrate completely prevented concretions. It was concluded that: (1) magnesium deficiency-induced calcifications are oxalate-free and are not sensitive to mobilization by alkalinization with potassium citrate, which might explain the failure of the drug to prevent stone recurrence in clinical stone patients, and (2) the combination of potassium citrate and magnesium citrate, which shows enormous anticalcification efficacy, deserves high priority in clinical trials aimed at evaluating strategies for the prevention of stones.  相似文献   

4.
OBJECTIVE: To identify biochemical and dietary factors which may play a role in the low incidence of stone formation in the black South African population. SUBJECTS AND METHODS: The study included 31 semiurbanized black and 29 urbanized white subjects. The protocol and modern laboratory techniques used to assess recurrent stone formers were followed. Urinary sodium, potassium, creatinine, calcium, phosphate and urate levels were measured, and urinary citrate, oxalate and cystine assessed. RESULTS: Black subjects ate a diet significantly higher in sodium (P < 0.04); there was no difference in serum levels but urinary sodium was significantly higher (P < 0.001) in black than in white subjects. Urinary potassium, calcium, citrate, phosphate and cystine were all significantly lower in black than in white subjects (P < 0.001 for the first four and P < 0.03 for cystine). CONCLUSION: Certain intrinsic factors in South African black subjects may account for their lower frequency of stone formation than in white subjects. Of these, the very low urinary calcium, decreased urinary cystine and different interactions between sodium and calcium/cystine are probably important.  相似文献   

5.
PURPOSE: Most stones contain more than one type of crystals, and some combinations, such as calcium phosphate/calcium oxalate, are more common than others. Epitaxy between the crystals has been suggested to play a role in growth of such stones. The specific aim of this study is to investigate the involvement of calcium phosphate in crystallization of calcium oxalate. MATERIALS AND METHODS: Twenty calcium oxalate stones or stone fragments were examined using various microscopic techniques, including scanning, transmission and back-scattered electron microscopy. Similarly, calcium oxalate stones induced on a plastic foreign body implanted inside urinary bladders of laboratory rats were also investigated. Examination of the interface between calcium phosphate and calcium oxalate crystals was emphasized. RESULTS: Close association between crystals of calcium phosphate and calcium oxalate were found in both the human and rat stones. All crystals examined were associated with an organic matrix on the surface and contained copious amounts of organic material within the crystalline entities. Interface between the crystals also appeared to be occupied by organic matrix. CONCLUSIONS: Results of this and other studies from our laboratory indicate that epitaxy between various crystals, even though theoretically possible, appears unlikely in vivo. The appearance of specific crystalline combinations in stones is probably a result of the urinary environment being conducive for crystallization of those components. Heterogeneous nucleation of calcium oxalate is most probably induced by biological elements, including membranous cellular degradation products.  相似文献   

6.
BACKGROUND: The mechanism of excess urine calcium excretion in human idiopathic hypercalciuria (IH) has not been determined but may be secondary to enhanced intestinal calcium absorption, decreased renal calcium reabsorption, and/or enhanced bone demineralization. We have developed a strain of genetic hypercalciuric stone-forming (GHS) rats as an animal model of human IH. When these GHS rats are placed on a low-calcium diet (LCD), urinary calcium (UCa) excretion exceeds dietary calcium intake, suggesting that bone may contribute to the excess UCa excretion. We used the GHS rats to test the hypothesis that bone contributes to the persistent IH when they are fed an LCD by determining if alendronate (Aln), which inhibits bone resorption, would decrease UCa excretion. METHODS: GHS rats (N = 16) and the parent strain (Ctl, N = 16) were fed 13 g/day of a normal (1.2%) calcium diet (NCD) for seven days and were then switched to a LCD (0. 02%) for seven days. Ctl and GHS rats in each group were then continued on LCD for an additional seven days, with or without injection of Aln (50 micrograms/kg/24 hrs). UCa excretion was measured daily during the last five days of each seven-day period. To determine the effects of Aln on urine supersaturation, the experiment was repeated. All relevant ions were measured, and supersaturation with respect to calcium oxalate and calcium hydrogen phosphate was determined at the end of each period. RESULTS: UCa was greater in GHS than in Ctl on NCD (7.4 +/- 0.5 mg/24 hrs vs. 1.2 +/- 0.1, GHS vs. Ctl, P < 0.01) and on LCD (3.9 +/- 0.2 mg/24 hrs vs. 0. 7 +/- 0.1, GHS vs. Ctl, P < 0.01). LCD provides 2.6 mg of calcium/24 hrs, indicating that GHS rats are excreting more calcium than they are consuming. On LCD, Aln caused a significant decrease in UCa in GHS rats and brought GHS UCa well below calcium intake. Aln caused a marked decrease in calcium oxalate and calcium hydrogen phosphate supersaturation. CONCLUSION: Thus, on a LCD, there is a significant contribution of bone calcium to the increased UCa in this model of IH. Aln is effective in decreasing both UCa and supersaturation. The Aln-induced decrease in urine supersaturation should be beneficial in preventing stone formation in humans, if these results, observed in a short-term study using the hypercalciuric stone-forming rat can be confirmed in longer term human studies.  相似文献   

7.
OBJECTIVE: Studies using adult human subjects indicate that dietary protein and sodium chloride have negative effects on the retention of calcium by increasing urinary calcium excretion, while alkaline potassium improves calcium retention along with decreasing urinary calcium losses. This study investigated the effect of these dietary factors on acute urinary calcium excretion in 14 prepubescent girls age 6.7 to 10.0 years. METHODS: Subjects provided a fasting urine sample then consumed a meal containing one of five treatments: moderate protein (MP) providing 11.8 g protein, moderate protein plus 26 mmol sodium chloride (MP+Na), high protein (HP) providing 28.8 g protein, high protein plus 26 mmol sodium chloride (HP+Na), or high protein plus 32 mmol potassium as tripotassium citrate (HP+K). Urine was collected at 1.5 and 3.0 hours after the meal. Supplemental protein was given as 80:20 casein:lactalbumin. Test meals were isocaloric, and unless intentionally altered, components of interest except phosphate were equal between treatments. Each subject completed all five treatments. RESULTS: Urinary calcium excretion rose after the meal, peaking at 1.5 hours. There were no significant differences in calcium excretion between treatments at any time point. The high protein treatments did not result in a significant increase in either net acid or sulfate excretion at 1.5 hours compared to moderate protein. Dietary sodium chloride had no effect on urinary sodium or calcium excretion over the 3 hours. After the potassium treatment, sodium excretion increased (p< or =0.002) and net acid excretion decreased (p<0.001) compared to other treatments at 1.5 hours. CONCLUSIONS: In children, a simultaneous increase in protein and phosphorus due to increased milk protein intake did not increase acute urinary calcium excretion. An effect of dietary sodium chloride on acute urinary calcium excretion was not observed. Both these findings were similar to those of adult studies previously conducted in the same laboratory using similar format and treatments. Potassium citrate was not hypocalciuric in children, a response differing from that for adults, who have shown a decrease in acute urinary calcium excretion in response to alkaline potassium treatment. Further characterization of calciuric responses to dietary factors is required for children, who may differ from adults in many respects.  相似文献   

8.
OBJECTIVES: To determine whether patients with recurrent calcium stone formation have more significant metabolic abnormalities compared with patients with first-time stone formation as determined by a comprehensive metabolic evaluation. METHODS: We investigated metabolic abnormalities in 37 patients (14 men, 23 women) with first-time and 136 patients (83 men, 53 women) with recurrent calcium stones, stratified according to sex. Calcium oxalate supersaturation indexes of Tiselius (1991) and Ogawa (1996) were also compared between the groups. In addition to the specific metabolic abnormalities, we analyzed the total number of such defects for each group. RESULTS: In men, the average number of metabolic abnormalities in each patient was greater in patients with recurrent stones (2.20+/-0.86) than in those with first-time stones (1.46+/-1.27). Such a difference could only be demonstrated for women if low urine volume was excluded as a specific abnormality. Although the frequency of each abnormality was higher in patients with recurrent stones, a statistically significant difference was only noted in the frequency of hypocitraturia between women with first-time and recurrent stone formation (11.1% versus 37.8%, P < 0.05). There were no significant differences in the calcium oxalate supersaturation indexes between first-time and recurrent stone formation in either men or women. CONCLUSIONS: Women with recurrent stones have a higher prevalence of hypocitraturia than women with first-time stones. Potassium citrate therapy for prevention of urolithiasis may be especially useful for this patient population.  相似文献   

9.
Supersaturation (SS) with respect to calcium oxalate monohydrate (COM), brushite (Br) and uric acid (UA), obtained in three 24-hour pretreatment urine samples from patients with stone disease were compared to the mineral composition of stones passed by the same patients to determine whether sparse urine SS measurements accurately reflect the long-term average SS values in the kidney and final urine. Among males and females elevation of SS above same sex normals corresponded to composition. As well, treatments that reduced stone rates also reduced these SS values. The degree of calcium phosphate (CaP) admixture was accurately matched by shifting magnitudes of COM and Br SS. As well, increasing CaP content was associated with falling urine citrate and rising urine pH, suggesting renal tubular acidosis. We conclude that sparse urine SS measurements accurately track stone admixtures, and are a reliable index of average renal and urine SS.  相似文献   

10.
Crystalluria is important in the evaluation of patients with urinary stone and is more frequently encountered in elderly than in younger adults. After noting that calcium oxalate monohydrate crystalluria was higher in elderly patients, we undertook a study to determine if oral treatment with naftidrofuryl oxalate, a drug frequently prescribed for elderly patients in France, was associated with crystalluria. The presence of early morning crystalluria was assessed in non-stone-forming patients hospitalized in a geriatric department. We studied 251 patients without a history of nephrolithiasis (mean age; 81.6 +/- 8.5 years) of whom 49 had been treated orally with naftidrofuryl oxalate at a mean dosage of 485 +/- 120 mg/24h. We identified and quantified the crystals in one early morning urine sample kept at room temperature. The frequency of crystalluria in elderly patients without stones who were not taking naftidrofuryl oxalate was 31.7% compared with only 6% in the general adult population. In this group, mainly calcium phosphate crystals were found. In patients who received naftidrofuryl oxalate, the frequency of crystalluria was 51% of which the major component was calcium oxalate monohydrate and not calcium phosphate. Naftidrofuryl oxalate may enhance crystal formation in elderly patients. This should be taken into account, particularly when other predisposing factors for nephrolithiasis are present, and a preventive increase in fluid intake considered.  相似文献   

11.
INTRODUCTION: The causes of nephrolithisis are multifactorial and have not yet been enough investigated [1]. Hypercalciuria is the most common cause of metabolic nephrolithiasis [2-4]. Close relationship between urinary calcium and urinary sodium has been a subject of reported observations in the past, showing that high urinary sodium is associated with high urinary calcium [5-7]. Hyperoxaluria, hyperuricosuria and cystinuria are also metabolic disorders that can lead to nephrolithiasis. Recent studies have indicated that urinary elimination of cystine is influenced by urinary sodium excretion. Based on these observations it has been hypothesised that patients with high urinary sodium excretion are at high risk of urinary stone disease. The purpose of the study was to investigate sodium excretion in a 24-hour urine and first morning urine collected from children with lithogenic metabolic abnormalities (hypercalciuria, hyperoxaluria, hyperuricosuria, cystinuria), both with nephrolithiasis and without it, in order to determine its significance in urinary calculi formation. PATIENTS AND METHODS: Urinary sodium excretion was investigated in 2 groups of children: patients with lithogenic metabolic abnormalities, but without urinary stone disease (L group) and patients with nephrolithiasis (C group). Both groups were divided into 2 subgroups: patients with hypercalciuria and without it. There were 22 patients in group L (mean age 11.97 +/- 4.13 years), of whom 17 formed a hypercalciuric subgroup and 5 formed a non-hypercalciuric subgroup (3 patients with hyperuricosuria and 2 patients with hyperoxaluria). Group C consisted of 21 patients with nephrolithiasis (mean age 12.67 +/- 3.44 years), of whom 6 formed a hypercalciuric subgroup and 15 formed a non-hypercalciuric group (2 patients with cystinuria and 13 patients without lithogenic metabolic abnormalities). Control group consisted of 42 healthy age-matched children. All subjects had a normal renal function. A detailed history and clinical examination were done, and ultrasonography was performed in all patients. A 24-hour urine, first morning urine and serum specimen were analysed for sodium, potassium, calcium, uric acid, urea and creatinine. Fractional excretion of sodium, as well as urinary sodium to creatinin ratio and urinary sodium to potassium ratio, were calculated from the findings. Sodium and potassium levels were determined by flame photometry, calcium was measured by atomic absorption technique (Beckman Atomic Spectrophotometer, Synchron CX-5 model, USA), uric acid by carbonate method and creatinine by Jaffe technique. Cystine and dibasic amino acids were quantified by ion chromatography. Urinary oxalate excretion was determined by enzyme spectrophotometry. Hypercalciuria was defined by 24-hour calcium excretion greater than 3.5 mg/kg per day and/or calcium to creatinine ratio greater than 0.20 [8]. Uric acid excretion was expressed as uric acid excretion factored for glomerular filtration, according to Stapleton's and Nash's formula [9]. Normal values were lower than 0.57 mg/dl of glomerular filtration rate in 24-hour samples. Mean values were statistically analyzed by Pearson's linear correlation and analysis of variance (ANOVA). RESULTS: Urinary sodium concentration values including urinary sodium to potassium ratios, are shown in Table 1. We found that urinary sodium excretion was significantly increased in patients of both L and C groups when compared with controls (p < 0.05). Further analysis of the subgroups showed that urinary sodium excretion was significantly higher only in patients with hypercalciuria of both L and C groups in comparison to controls (p < 0.05) (Table 2). A significant positive correlation was found between 24-hour urinary sodium to creatinine ratio and urinary calcium to creatinine ratio (r = 0.31; p < 0.001) (Graph 1), as well as between urinary sodium to potassium ratio in 24-hour and first morning urine (r = 0.69; p < 0.001) (Graph 2). (A  相似文献   

12.
The volume, pH and composition of 24-h urine samples, collected by 13 healthy male adults, were followed over a period of one year. Significant and systematic variations in urine pH, calcium, phosphate, oxalate, uric acid, potassium and magnesium were observed. A significant but non-sinusoidal variation in sodium excretion was found but there were no significant changes in urinary volume, creatinine or hydroxyproline. Many of the observed changes could be attributed to variations in the pattern of food consumption throughout the year but calcium, phosphate and oxalate were exceptions in that seasonal variations in these parameters appeared to be due to the effects of sunlight (or vitamin D) rather than to the diet.  相似文献   

13.
BACKGROUND: Several reports in the 1970s suggested that etidronate disodium might be clinically useful to prevent calcium stones, but the use of etidronate in the urolithiasis field was discontinued due to adverse effects of this drug on skeletal turnover and mineralization. Because the drug might affect not only crystallization, but also crystal-tubular interactions, we investigated the minimum dose of etidronate necessary to effectively prevent stone recurrence without adverse side effects. METHODS: We examined the effect of etidronate on the crystallization of calcium oxalate, calcium phosphate and magnesium ammonium phosphate using synthetic urine and measured by an aggregometer. We also studied its effect on the adhesion of calcium oxalate monohydrate crystals to Madin-Darby canine kidney (MDCK) cells in vitro. RESULTS: Etidronate affected the crystallization+ of not only calcium phosphate and calcium oxalate, but also magnesium ammonium phosphate in synthetic urine. The inhibitory activities on these crystallizations were detected at extremely low drug concentrations. Etidronate also had a strong inhibitory activity against the adhesion of calcium oxalate crystals to MDCK cells. CONCLUSION: Although further studies are necessary regarding the effects of etidronate on crystallization and crystal adhesion both in vivo and in vitro, and the appropriate schedule of dosing to prevent side effects, it is possible that etidronate may be useful in the treatment of urinary stones.  相似文献   

14.
Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the binding of these crystals to renal epithelial cells. Quantitative data defining the excretion of this protein are necessary to determine its role in urinary stone formation. In the present studies, we determined uropontin excretion rates of normal humans. Urine samples were obtained under conditions of known dietary intake from young adult human volunteers with no history, radiographic or laboratory evidence of renal disease. Urinary concentrations of uropontin were measured by a sensitive ELISA employing an affinity purified polyclonal antiserum to uropontin. Thirteen normal subjects ingested a constant diet providing 1 gram of calcium, 1 gram of phosphorus, 150 mEq of sodium and 1 gram of protein per kilogram of body wt per day during an eight day study period. The relationship of urinary volume to uropontin excretion was assessed by varying fluid intake on the last four days of the study to change the mean urine volume/24 hr by > 500 ml. Urine collected in six hour aliquots for eight days was analyzed for uropontin by ELISA, and for calcium, and creatinine. Daily uropontin excretion of 13 individual subjects was 3805 +/- 1805 micrograms/24 hr (mean +/- 1 SD). The mean urinary levels (1.9 micrograms/ml) detected in the present study are sufficient for inhibition of crystallization; our previous studies have demonstrated that the nucleation, growth and aggregation of calcium oxalate crystals and their binding to renal cells in vitro are inhibited by this concentration of purified uropontin. In contrast to the regular pattern of diurnal variation of calcium excretion seen in most subjects, uropontin excretion showed no regularity of diurnal variation and was not directly related to either calcium or creatinine excretion or changes in urinary volume. However, uropontin concentration varied inversely with urine volume (P < or = 0.001), so that the highest uropontin concentrations occurred when urine volume was the lowest. We conclude that the physiologic characteristic of an inverse relationship of uropontin concentration to urine volume favors protection from urinary crystallization of calcium oxalate by uropontin. Our quantitative definition of urinary uropontin excretion of normal adults provides the basis for the evaluation of uropontin excretion by individuals who have formed urinary stones.  相似文献   

15.
PURPOSE: We determined the incidence and spectrum of metabolic abnormalities in patients with caliceal diverticular calculi. MATERIALS AND METHODS: Five men and 9 women with caliceal diverticular calculi underwent metabolic evaluation, including determination of serum electrolytes, calcium, phosphate and uric acid, and 24-hour urinary volume, creatinine, calcium, oxalate, uric acid and citrate. RESULTS: Of the 14 patients 7 (50%) had urinary excretion abnormalities promoting stone formation, including hypercalciuria in 3, hyperoxaluria in 1, hypercalciuria combined with hyperuricosuria in 1 and hyperoxaluria combined with hyperuricosuria in 2. Two patients had a history of gout while another had radiographic evidence of medullary sponge kidney. Of the patients 9 (64.3%) had a history of synchronous or metachronous calculi distant from the involved caliceal diverticular stone and 5 (55.6%) of these 9 had definable metabolic disorders. However, there was no statistically significant difference in urinary excretion values between patients with or without a history of additional extra diverticular stones. CONCLUSIONS: Urinary stasis alone does not explain stone formation in a significant number of patients with caliceal diverticular calculi. Rather, the local physiological environment of the urine likely has a predisposing role and evaluation for metabolic abnormalities should be considered. In some patients cure may be effected by treating the stone and any associated metabolic disorders rather than the diverticulum.  相似文献   

16.
JC Lieske  MS Hammes  FG Toback 《Canadian Metallurgical Quarterly》1996,10(2):519-33; discussion 533-4
Renal tubular fluid in the distal nephron is supersaturated with calcium and oxalate ions that nucleate to form crystals of calcium oxalate monohydrate (COM), the most common crystal in renal stones. How these nascent crystals are retained in the nephron to form calculi in certain individuals is not known. Recent studies from this laboratory have demonstrated that COM crystals can bind within seconds to the apical surface of renal epithelial cells, suggesting one mechanism whereby crystals could be retained in the tubule. Adherence of crystals to cells along the nephron may be opposed by specific urinary anions such as glycosaminoglycans, uropontin, nephrocalcin, and citrate. In culture, adherent crystals are quickly internalized by renal cells, and reorganization of the cytoskeleton, alterations in gene expression, and initiation of proliferation can ensue. Each of these cellular events appears to be regulated by extracellular factors. Identification of molecules in tubular fluid and on the cell surface that determine whether a crystal-cell interaction results in retention of the crystal or its passage out of the nephron appears critical for understanding the pathogenesis of nephrolithiasis.  相似文献   

17.
Possible effects of crystal agglomeration on the early stages of calcium oxalate papillar stone formation are evaluated. The collecting ducts are filled with liquid that flows laminarly as established through hydrodynamical and physicochemical considerations. Under such conditions, agglomeration due to laminar shear forces proceeds. Agglomeration of calcium oxalate monohydrate crystals present in urine at a concentration typical for clinically observed crystalluria cannot result in the formation of a particle sufficiently large enough to be retained in the Bellini's duct and become a papillar stone nidus (nucleus). Formation of such an aggregate during the passage time of urine through the duct requires an unrealistically high concentration of crystals in urine, one that exceeds the normal content of urinary oxalate by several orders of magnitude. Aggregates obstructing the Bellini's duct as assumed in the free particle theory cannot represent a major factor in stone formation. This conclusion is corroborated by experimental results and other observations.  相似文献   

18.
The fact that organic material is always present and distributed throughout each renal calculus suggests that it may play a role in stone formation. The organic matrix of calcium oxalate (CaOx) crystals freshly generated in urine in vitro contains urinary prothrombin fragment 1 (UPTF1) as the principal protein. In this initial study, matrix was extracted from 12 renal calculi and evaluated for the presence of UPTF1 using Western blotting. UPTF1 was present in all eight stones whose principal component was CaOx, and in one of two stones which consisted mainly of calcium phosphate (CaP). UPTF1 was absent from the two struvite calculi examined. The relationship between CaP and UPTF1 was explored further. Matrix harvested from CaP crystals freshly generated in urine in vitro was also shown to contain UPTF1 as its principal component. Our inability to detect UPTF1 in one mixed CaOx/CaP stone may be related to our methods of matrix retrieval, while its absence from two struvite stones argues against it being present in the other stones merely as a consequence of passive inclusion. This absence may be related to the alkaline environment typical of struvite stone growth. The finding that UPTF1 is present in some renal stones provides the first direct evidence that links blood coagulation proteins with urolithiasis.  相似文献   

19.
The primary care physician has a responsibility not only to recognize and treat acute stone passage but to ensure that the patient with recurrent stones has metabolic evaluation and appropriate preventive care. Renal colic is typically severe, radiates to the groin, is associated with hematuria, and may cause ileus. About 90% of stones that cause renal colic pass spontaneously. The patient with acute renal colic should be treated with fluids and analgesics and should strain the urine to recover stone for analysis. Highgrade obstruction or failure of oral analgesics to relieve pain may require hospitalization; a urinary tract infection in the setting of an obstruction is a urologic emergency requiring immediate drainage, usually with a ureteral stent. Several approaches are available when stones do not pass spontaneously, including extracorporeal shock wave lithotripsy, percutaneous lithotripsy, and ureteroscopic laser lithotripsy. Calcium stone disease has a lifetime prevalence of 10% in men and causes significant morbidity. Renal failure is unusual. Stone types include calcium oxalate, uric acid, struvite, and cystine. Stone analysis is particularly important when a noncalcareous constituent is identified. The majority of patients with nephrolithiasis will have recurrence, so prevention is a high priority. High fluid intake is a mainstay of prevention. Metabolic evaluation will indicate other appropriate preventive measures, which may include dietary salt and protein restriction, and use of thiazide diuretics, neutral phosphate, potassium citrate, allopurinol, and magnesium salts. Dietary calcium restriction may worsen oxaluria and negative calcium balance (osteoporosis).  相似文献   

20.
OBJECTIVE: To evaluate the circadian fluctuations in the risk of urinary calcium oxalate stone formation with regard to critical periods of crystallization. PATIENTS AND METHODS: Over a given time period, the Tiselius index depends on urine volume and urinary excretion of oxalate, calcium, citrate and magnesium. This crystallization potential was evaluated during three successive periods spread over 24 h for 25 recurrent stone-formers aged 16-76 years (mean 50) and 25 control subjects aged 27-71 years (mean 44). RESULTS: There was no significant difference in the value of the Tiselius index for all equivalent time periods in both groups of patients. The minimum value was recorded in the afternoon and the circadian pattern of the index illustrated the predominant importance of urinary output in its determination. Morning urinary concentrations and excretions of citrate, and nocturnal levels of magnesium were significantly higher in the stone-formers when compared with the control subjects. CONCLUSION: The lithogenic risk for calcium oxalate stones was maximal at the end of the night or during the early morning, when urinary output was minimal. This circadian study revealed abnormalities that are not apparent from non-fractionated 24 h urine samples, and which were potentially relevant to therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号