首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The problem of designing a nonlinear feedback control scheme for variable speed wind turbines, without wind speed measurements, in below rated wind conditions was addressed. The objective is to operate the wind turbines in order to have maximum wind power extraction while also the mechanical loads are reduced. Two control strategies were proposed seeking a better performance. The first strategy uses a tracking controller that ensures the optimal angular velocity for the rotor. The second strategy uses a Maximum Power Point Tracking (MPPT) algorithm while a non-homogeneous quasi-continuous high-order sliding mode controller is applied to ensure the power tracking. Two algorithms were developed to solve the tracking control problem for the first strategy. The first one is a sliding mode output feedback torque controller combined with a wind speed estimator. The second algorithm is a quasi-continuous high-order sliding mode controller to ensure the speed tracking. The proposed controllers are compared with existing control strategies and their performance is validated using a FAST model based on the Controls Advanced Research Turbine (CART). The controllers show a good performance in terms of energy extraction and load reduction.  相似文献   

2.
As wind turbines become larger and hence more flexible, the design of advanced controllers to mitigate fatigue damage and optimise power capture is becoming increasingly important. The majority of the existing literature focuses on feedback controllers that use measurements from the turbine itself and possibly an estimate or measurement of the current local wind profile. This work investigates a predictive controller that can use short‐term predictions about the approaching wind field to improve performance by compensating for measurement and actuation delays. Simulations are carried out using the FAST aeroelastic design code modelling the NREL 5 MW reference turbine, and controllers are designed for both above rated and below rated wind conditions using model predictive control. Tests are conducted in various wind conditions and with different future wind information available. It is shown that in above rated wind conditions, significant fatigue load reductions are possible compared with a controller that knows only the current wind profile. However, this is very much dependent on the speed of the pitch actuator response and the wind conditions. In below rated wind conditions, the goals of power capture and fatigue load control were considered separately. It was found that power capture could only be improved using wind predictions if the wind speed changed rapidly during the simulation and that fatigue loads were not consistently reduced when wind predictions were available, indicating that wind predictions are of limited benefit in below rated wind conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
H. Namik  K. Stol 《风能》2010,13(1):74-85
Floating wind turbines offer a feasible solution for going further offshore into deeper waters. However, using a floating platform introduces additional motions that must be taken into account in the design stage. Therefore, the control system becomes an important component in controlling these motions. Several controllers have been developed specifically for floating wind turbines. Some controllers were designed to avoid structural resonance, while others were used to regulate rotor speed and platform pitching. The development of a periodic state space controller that utilizes individual blade pitching to improve power output and reduce platform motions in above rated wind speed region is presented. Individual blade pitching creates asymmetric aerodynamic loads in addition to the symmetric loads created by collective blade pitching to increase the platform restoring moments. Simulation results using a high‐fidelity non‐linear turbine model show that the individual blade pitch controller reduces power fluctuations, platform rolling rate and platform pitching rate by 44%, 39% and 43%, respectively, relative to a baseline controller (gain scheduled proportional–integral blade pitch controller) developed specifically for floating wind turbine systems. Turbine fatigue loads were also reduced; tower side–side fatigue loads were reduced by 39%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The possibility of a pitch instability for floating wind turbines, due to the blade‐pitch controller, has been discussed extensively in recent years. Contrary to many advanced multi‐input‐multi‐output controllers that have been proposed, this paper aims at a standard proportional‐integral type, only feeding back the rotor speed error. The advantage of this controller is its standard layout, equal to onshore turbines, and the clearly defined model‐based control design procedure, which can be fully automated. It is more robust than most advanced controllers because it does not require additional signals of the floating platform, which make controllers often sensitive to unmodeled dynamics. For the design of this controller, a tailored linearized coupled dynamic model of reduced order is used with a detailed representation of the hydrodynamic viscous drag. The stability margin is the main design criterion at each wind speed. This results in a gain scheduling function, which looks fundamentally different than the one of onshore turbines. The model‐based controller design process has been automated, dependent only on a given stability margin. In spite of the simple structure, the results show that the controller performance satisfies common design requirements of wind turbines, which is confirmed by a model of higher fidelity than the controller design model. The controller performance is compared against an advanced controller and the fixed‐bottom version of the same turbine, indicating clearly the different challenges of floating wind control and possible remedies.  相似文献   

5.
Matthew A. Lackner 《风能》2013,16(3):435-444
This paper investigates the loads on offshore floating wind turbines and a new control method that can be used to reduce these loads. In this variable power collective pitch control method, the rated generator speed, which is the set point that the collective pitch control attempts to drive the actual generator speed towards, is no longer a constant value but instead is a variable that depends on the platform pitch velocity. At a basic physical level, this controller achieves the following: as the rotor of a floating turbine pitches upwind, the controller adjusts so as to extract more energy from the wind by increasing the rated generator speed and thus damps the motion; as the rotor pitches downwind, less energy is extracted because the controller reduces the rated generator speed and again damps the motion. This method is applied to the NREL 5 MW wind turbine model, in above rated conditions where the platform motion is most problematic. The results indicate significant load reductions on key structural components, at the expense of minor increases in power and speed variability. The loads on the blades and tower are investigated more generally, and simple dynamic models are used to gain insight into the behavior of floating wind turbine systems. It is clear that for this particular design, aerodynamic methods for reducing platform motion and tower loads are likely inadequate to allow for a viable design, so new designs or possibly new control degrees of freedom are needed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Matthew A. Lackner 《风能》2013,16(4):519-528
This paper investigates the loads on offshore floating wind turbines and a new control method that can be used to reduce these loads. In this variable power collective pitch control method, the rated generator speed, which is the set point that the collective pitch control attempts to drive the actual generator speed towards, is no longer a constant value but instead a variable that depends on the platform pitch velocity. At a basic physical level, this controller achieves the following: as the rotor of a floating turbine pitches upwind, the controller adjusts so as to extract more energy from the wind by increasing the rated generator speed and thus damps the motion; as the rotor pitches downwind, less energy is extracted because the controller reduces the rated generator speed and again damps the motion. This method is applied to the NREL 5 MW wind turbine model, in above‐rated conditions where the platform motion is most problematic. The results indicate significant load reductions on key structural components, at the expense of minor increases in power and speed variability. The loads on the blades and tower are investigated more generally, and simple dynamic models are used to gain insight into the behavior of floating wind turbine systems. It is clear that for this particular design, aerodynamic methods for reducing platform motion and tower loads are likely inadequate to allow for a viable design, and so new designs or possibly new control degrees of freedom are needed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
K. Johnson  A. Wright 《风能》2011,14(4):571-601
Wind turbines experience both fatigue and extreme loading, and individual components of a wind turbine are affected differently by these loads. The current practice to achieve the typical 20 year design life is to build a turbine with robust components that can withstand fatigue and extreme loads for this duration. Unfortunately, overbuilding of components may lead to higher‐than‐necessary initial capital costs. In this research, we studied design‐driving load cases and designed advanced control algorithms aimed at enabling a decrease in initial capital cost. Our approach used a subset of a full International Electrotechnical Commission loads case analysis and selected major components experiencing design‐driving extreme loads that can be alleviated using advanced control. We first describe the results from the loads case analysis and then discuss the components on which we focused the advanced control design. We next describe the controller design and finally compare the results from the advanced controller simulations with those using a baseline controller. The baseline consists of a nonlinear torque controller below rated wind speed and a proportional‐integral‐derivative‐like controller above rated and the advanced controller uses proportional feedback and state‐space design to reduce tower bending and drive train torsional loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Ali Poureh  Amin Nobakhti 《风能》2020,23(2):312-326
A robust multivariable strategy for pitch and torque control design of variable‐speed variable‐pitch wind turbines in the full load region is introduced in this paper. The pitch and torque control loops that share the tracking and active damping of drivetrain torsional mode objectives are designed simultaneously using a novel decomposition scheme. This permits the systematic design of robust multivariable controllers for wind turbines in a manner that facilitates industrial application. We achieve this by making the process of weighting function design fast, intuitive, and simple and by giving the designer a clear insight on the compromising aspects of the various control system objectives. FAST simulation is used to demonstrate application of the method.  相似文献   

9.
Structural loads of wind turbines are becoming critical because of the growing size of wind turbines in combination with the required dynamic output demands. Wind turbine tower and blades are therefore affected by structural loads. To mitigate the loads while maintaining other desired conditions such as the optimization of power generated or the regulation of rotor speed, advanced control schemes have been developed during the last decade. However, conflict and trade‐off between structural load reduction capacity of the controllers and other goals arise; when trying to reduce the structural loads, the power production or regulation performance may be also reduced. Suitable measures are needed when designing controllers to evaluate the control performance with respect to the conflicting control goals. Existing measures for structural loads only consider the loads without referring to the relationship between loads and other control performance aspects. In this contribution, the conflicts are clearly defined and expressed to evaluate the effectiveness of control methods by introducing novel measures. New measures considering structural loads, power production, and regulation to prove the control performance and to formulate criteria for controller design are proposed. The proposed measures allow graphical illustration and numerical criteria describing conflicting control goals and the relationship between goals. Two control approaches for wind turbines, PI and observer‐based state feedback, are defined and used to illustrate and to compare the newly introduced measures. The results are obtained by simulation using Fatigue, Aerodynamics, Structures, and Turbulence (FAST) tool, developed by the National Renewable Energy Laboratory (NREL), USA.  相似文献   

10.
风电机组变速与变桨距控制过程中的动力学问题研究   总被引:4,自引:2,他引:4  
叶杭冶  潘东浩 《太阳能学报》2007,28(12):1321-1328
讨论了额定风速以下的变速运行控制和额定风速以上的变桨距控制以及变速与变桨距两种控制策略的相互耦合关系;分析了风电机组主要部件包括叶轮、传动系统、塔架的各阶振动模态以及它们之间的相互影响力;提出了转矩控制对传动系统扭转振动和变桨距控制对塔架前后振动的影响力及控制方案;应用BLADED和MAT- LAB软件对主要控制环节进行设计及参数调整,并对机组的控制效果进行仿真。结果表明,所采用的控制策略和控制算法能够满足控制要求,并能有效地解决动力学问题。  相似文献   

11.
Fiona Dunne  Lucy Y. Pao 《风能》2016,19(12):2153-2169
In above‐rated wind speeds, the goal of a wind turbine blade pitch controller is to regulate rotor speed while minimizing structural loads and pitch actuation. This controller is typically feedback only, relying on a generator speed measurement, and sometimes strain gages and accelerometers. A preview measurement of the incoming wind speed (from a turbine‐mounted lidar, for example) allows the addition of feedforward control, which enables improved performance compared with feedback‐only control. The performance improvement depends both on the amount of preview time available in the wind speed measurement and the coherence between the wind measurement and the wind that is actually experienced by the turbine. We show how to design a collective‐pitch optimal controller that takes both of these factors into account. Simulation results show significant improvement compared with baseline controllers and are well correlated with linear model‐based results. Linear model‐based results show the benefit of preview measurements for various preview times and measurement coherences. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The increasing size of modern wind turbines also increases the structural loads caused by effects such as turbulence or asymmetries in the inflowing wind field. Consequently, the use of advanced control algorithms for active load reduction has become a relevant part of current wind turbine control systems. In this paper, an individual blade pitch control law is designed using multivariable linear parameter‐varying control techniques. It reduces the structural loads both on the rotating and non‐rotating parts of the turbine. Classical individual blade pitch control strategies rely on single‐control loops with low bandwidth. The proposed approach makes it possible to use a higher bandwidth since it accounts for coupling at higher frequencies. A controller is designed for the utility‐scale 2.5 MW Liberty research turbine operated by the University of Minnesota. Stability and performance are verified using the high‐fidelity nonlinear simulation and baseline controllers that were directly obtained from the manufacturer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
For the cost per kilowatt hour to be decreased, the trend in offshore wind turbines is to increase the rotor diameter as much as possible. The increasing dimensions have led to a relative increase of the loads on the wind turbine structure; thus, it is necessary to react to disturbances in a more detailed way, e.g. each blade separately. The disturbances acting on an individual wind turbine blade are to a large extent deterministic; for instance, tower shadow, wind shear, yawed error and gravity are depending on the rotational speed and azimuth angle and will change slowly over time. This paper aims to contribute to the development of individually pitch‐controlled blades by proposing a lifted repetitive controller that can reject these periodic load disturbances for modern fixed‐speed wind turbines and modern variable‐speed wind turbines operating above‐rated. The performance of the repetitive control method is evaluated on the UPWIND 5 MW wind turbine model and compared with typical individual pitch control. Simulation results indicate that for relatively slow changing periodic wind disturbances, this lifted repetitive control method can significantly reduce the vibrations in the wind turbine structure with considerably less high‐frequent control action. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Nonlinear model predictive control of wind turbines using LIDAR   总被引:1,自引:0,他引:1  
LIDAR systems are able to provide preview information of wind disturbances at various distances in front of wind turbines. This technology paves the way for new control concepts in wind energy such as feedforward control and model predictive control. This paper compares a nonlinear model predictive controller with a baseline controller, showing the advantages of using the wind predictions in the optimization problem to reduce wind turbine extreme and fatigue loads on tower and blades as well as to limit the pitch rates. The wind information is obtained by a detailed simulation of a LIDAR system. The controller design is evaluated and tested in a simulation environment with coherent gusts and a set of turbulent wind fields using a detailed aeroelastic model of the wind turbine over the full operation region. Results show promising load reduction up to 50% for extreme gusts and 30% for lifetime fatigue loads without negative impact on overall energy production. This controller can be considered as an upper bound for other LIDAR assisted controllers that are more suited for real time applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A. Kumar  K. Stol 《风能》2010,13(5):419-432
As wind turbines are becoming larger, wind turbine control must now encompass load control objectives as well as power and speed control to achieve a low cost of energy. Due to the inherent non‐linearities in a wind turbine system, the use of non‐linear model‐based controllers has the potential to increase control performance. A non‐linear feedback linearization controller with an Extended Kalman Filter is successfully used to control a FAST model of the controls advanced research turbine with active blade, tower and drive‐train dynamics in above rated wind conditions. The controller exhibits reductions in low speed shaft fatigue damage equivalent loads, power regulation and speed regulation when compared to a Gain Scheduled Proportional Integral controller, designed for speed regulation alone. The feedback linearization controller shows better rotor speed regulation than a Linear Quadratic Regulator (LQR) at close to rated wind speeds, but poorer rotor speed regulation at higher wind speeds. This is due to modeling inaccuracies and the addition of unmodeled dynamics during simulation. Similar performance between the feedback linearization controller and the LQR in reducing drive‐train fatigue damage and power regulation is observed. Improvements in control performance may be achieved through increasing the accuracy of the non‐linear model used for controller design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Active load reduction strategies such as individual pitch control (IPC) and trailing edge flap (TEF) actuation present ways of reducing the fatigue loads on the blades of wind turbines. This may enable development of lighter blades, improving the performance, cost effectiveness and viability of future multi‐megawatt turbine designs. Previous investigations into the use of IPC and TEFs have been limited to turbines with ratings up to 5 MW and typically investigate the use of these load reduction strategies on a single turbine only. This paper extends the design, implementation and analysis of individual pitch and TEFs to a range of classically scaled turbines between 5 and 20 MW. In order to avoid designing controllers which favour a particular scale, identical scale‐invariant system identification and controller design processes are applied to each of the turbines studied. Gain‐scheduled optimal output feedback controllers are designed using identified models to target blade root load fluctuations at the first and second multiples of the rotational frequency using IPC and TEFs respectively. The use of IPC and TEFs is shown in simulations to provide significant reductions in fatigue loads at the blade root. Fatigue loads on non‐rotating components such as the yaw bearing and tower root (yaw moment) are also reduced with the use of TEFs. Individual pitch performance is seen to be slightly lower on larger turbines, potentially due to a combination of reduced actuator bandwidth and movement of the rotational frequency of larger turbines into a more energetic part of the turbulent spectrum. However, TEF performance is consistent irrespective of scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The reduction of structural loads is becoming an important objective for the wind turbine control system due to the ever‐increasing specifications/demands on wind turbine rated power and related growth of turbine dimensions. Among various control algorithms that have been researched in recent years, the individual pitch control has demonstrated its effectiveness in wind turbine load reduction. Since the individual pitch control, like other load reduction algorithms, requires higher levels of actuator activity, one must take actuator constraints into account when designing the controller. This paper presents a method for the inclusion of such constraints into a predictive wind turbine controller. It is shown that the direct inclusion of constraints would result in a control problem that is nonconvex and difficult to solve. Therefore, a modification of the constraints is proposed that ensures the convexity of the control problem. Simulation results show that the developed predictive control algorithm achieves individual pitch control objectives while satisfying all imposed constraints.  相似文献   

18.
As the penetration of wind energy in worldwide electrical utility grids increases, there is a growing interest in the provision of active power control (APC) services from wind turbines and power plants to aid in maintaining grid stability. Recent research has focused on the design of active power controllers for wind turbines that can provide a range of APC services including inertial, primary frequency and secondary frequency control. An important consideration for implementing these controllers in practice is assessing their impact on the lifetime of wind turbine components. In this paper, the impact on the structural loads of a wind turbine providing a power reserve is explored by performing a load suite analysis for several torque‐based control strategies. Power reserve is required for providing those APC services that require the ability of the wind turbine to supply an increase in power. To study this, we performed a load suite on a simulated model of a research turbine located at the National Wind Technology Center at the National Renewable Energy Laboratory. Analysis of the results explores the effect of the different reserve strategies on turbine loading. In addition, field‐test data from the turbine itself are presented to augment and support the findings from the simulation study results. Results indicate that all power‐reserve strategies tend to decrease extreme loads and increase pitch actuation. Fatigue loads tend to be reduced in faster winds and increased in slower winds, but are dependent on reserve‐controller design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The non‐linear behaviour of wind turbines demands control strategies that guarantee the robustness of the closed‐loop system. Linear parameter‐varying (LPV) controllers adapt their dynamics to the system operating points, and the robustness of the closed loop is guaranteed in the controller design process. An LPV collective pitch controller has been developed within this work to regulate the generator speed in the above rated power production control zone. The performance of this LPV controller has been compared with two baseline control strategies previously designed, on the basis of classical gain scheduling methods and linear time‐invariant robust H controllers. The synthesis of the LPV controller is based on the solution of a linear matrix inequalities system, proposed in a mixed‐sensitivity control scenario where not only weight functions are used but also an LPV model of the wind turbine is necessary. As a contribution, the LPV model used is derived from a family of linear models extracted from the linearization process of the wind turbine non‐linear model. The offshore wind turbine of 5 MW defined in the Upwind European project is the used reference non‐linear model, and it has been modelled using the GH Bladed 4.0 software package. The designed LPV controller has been validated in GH Bladed, and an exhaustive analysis has been carried out to calculate fatigue load reductions on wind turbine components, as well as to analyse the load mitigation in some extreme cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In medium to large scale wind energy conversion systems (WECS), the control of the pitch angle of the blades is an usual method for power regulation above rated wind speed. However, limitations of the pitch actuator have a marked influence on the regulation performance. In variable-speed mode, the control of the generator torque is able to reduce the effects of the pitch actuator limitations. Nevertheless, in this case the system is multiple-input multiple-output (MIMO) and then the control design results more complex. In this situation advance control techniques, such as optimal control, are an interesting option for a systematic controller design. This work analyzes variable-pitch power regulation above rated wind speed in the context of optimal control. The analysis is approached from a new point of view in order to establish a clear connection between the choice of the optimization criteria and the compromise between power regulation and pitch actuator limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号