首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Light emitting diodes reliability review   总被引:1,自引:0,他引:1  
The increasing demand for light emitting diodes (LEDs) has been driven by a number of application categories, including display backlighting, communications, medical services, signage, and general illumination. The construction of LEDs is somewhat similar to microelectronics, but there are functional requirements, materials, and interfaces in LEDs that make their failure modes and mechanisms unique. This paper presents a comprehensive review for industry and academic research on LED failure mechanisms and reliability to help LED developers and end-product manufacturers focus resources in an effective manner. The focus is on the reliability of LEDs at the die and package levels. The reliability information provided by the LED manufacturers is not at a mature enough stage to be useful to most consumers and end-product manufacturers. This paper provides the groundwork for an understanding of the reliability issues of LEDs across the supply chain. We provide an introduction to LEDs and present the key industries that use LEDs and LED applications. The construction details and fabrication steps of LEDs as they relate to failure mechanisms and reliability are discussed next. We then categorize LED failures into thirteen different groups related to semiconductor, interconnect, and package reliability issues. We then identify the relationships between failure causes and their associated mechanisms, issues in thermal standardization, and critical areas of investigation and development in LED technology and reliability.  相似文献   

2.
Light Emitting Diodes (LEDs) are commercially important devices in opto-semiconductor industry. The light emitting properties of LEDs degrade with time of operation and may lead to device failure. Even though the stability and reliability of LEDs are important topics, they are not well researched with AFM to date. This work demonstrates that Kelvin Probe Force Microscopy (KPFM) is an appropriate method to identify specific sites of increased degradation in a semiconductor heterostructure. Furthermore, the study shows that KPFM provides the metrological basis for further investigations with respect to the progress of degradation and its physical background. In this study, KPFM has been used to measure the potential gradient over cross-sectioned LED heterostructure in operation at different states of degradation. The results show significant differences between new and aged LEDs, markedly at specific layers of the LED heterostructure.  相似文献   

3.
We review the failure modes and mechanisms of gallium nitride (GaN)-based light-emitting diodes (LEDs). A number of reliability tests are presented, and specific degradation mechanisms of state-of-the-art LED structures are analyzed. In particular, we report recent results concerning the following issues: 1) the degradation of the active layer induced by direct current stress due to the increase in nonradiative recombination; 2) the degradation of LEDs submitted to reverse-bias stress tests; 3) the catastrophic failure of advanced LED structures related to electrostatic discharge events; 4) the degradation of the ohmic contacts of GaN-based LEDs; and 5) the degradation of the optical properties of the package/phosphors system of white LEDs. The presented results provide important information on the weaknesses of LED technology and on the design of procedures for reliability evaluation. Results are compared with literature data throughout the text.  相似文献   

4.
超辐射发光二极管(SLD)集LD大输出功率和LED宽光谱优点于一体,是光纤陀螺仪中的关键元件与薄弱环节,其可靠性在很大程度上决定了光纤陀螺仪的可靠性。针对SLD寿命长、失效数据难于获取的特点,研究了基于性能退化数据的可靠性评估方法。在对SLD进行失效机理分析的基础上,提出用一维漂移布朗运动模型对产品在环境应力作用下的退化特性进行建模,基于所得模型,由SLD的性能退化信息估计模型中的参数进而评估得到SLD的可靠性指标。这克服了传统可靠性分析方法依赖寿命数据的缺点,能够在没有寿命数据的情况下评估得到SLD的可靠性指标,从而可节约大量的试验经费和试验时间,在工程应用上具有重要的价值。  相似文献   

5.
High power white LEDs are replacing current lighting sources, not only for indoor usage, but also for outdoor and harsher environmental applications. This calls for higher reliability with respect to electrical, thermal as well as humidity. In this work, a comprehensive review on the study of humidity reliability of high power LEDs is provided, and the humidity induced degradation mechanisms in packaged high power white LEDs and their failure sites are described. The failure degradation mechanisms are divided into three groups, namely the package level, chip level and interconnect level degradations. Modeling of the moisture degradation is also described, and new test designed for the humidity study is also introduced. The inability of current acceleration model to extrapolate accelerated test results to normal operating conditions for high power LEDs is shown, and this provides a new challenge for the estimation of the lifetime of high power LEDs under normal applications, along with other challenges that need to be addressed.  相似文献   

6.
The objective of this study is to quantitatively evaluate the impacts of LED components on the overdriving reliability of high power white LED chip scale packages (CSPs). The reliability tests under room temperature are conducted over 1000 h in this study on CSP LEDs with overdriving currents. A novel method is proposed to investigate the impact of various components, including blue die, phosphor layer, and substrate, on the lumen depreciation of CSP LEDs after aging test. The electro-optical measurement results show that the overdriving current can lead to both massive light output degradation and significant color shift of CSP LEDs. The quantitative analysis results show that the phosphor layer is the major contributor to the failure in early period aging test. For the long-term reliability, the degradations of phosphor and reflectivity of substrate contribute significantly on lumen depreciation. The proposed reliability assessment method with overdriving loadings can be usefully implemented for LED manufacturers to make a cost- and effective-decision before mass production.  相似文献   

7.
As the light-emitting diode (LED) becomes a mature technology in the general illumination space, there is a tendency to operate LEDs at high current densities and temperatures in order to gain higher light output at lower cost. Further, there is interest among intelligent-lighting platform developers to offer predictive maintenance capabilities to users. The existing useful life prediction model defines LED lifetime based on parametric failure; however, there is a need for a useful life prediction model based on catastrophic failure, which can occur with the degradation of components in an LED package. Electrical parameters, especially package series resistance, are good indicators of LED package health (i.e., remaining useful life) and could potentially be sensed real-time in an application. In this study, the series resistance variation pattern until catastrophic failure was measured at different current and temperature stress conditions. The degradation mechanisms at each phase of variation were explained and, using available models, activation energies and exponents were extracted. The experimental data suggest electromigration-induced metal migration from the contact metallization layer to the semiconductor is the cause of short circuit catastrophic failure of LED packages. The variation patterns of ideality factor and reverse leakage current support this hypothesis. The information presented can be used to develop a catastrophic life estimation model for LED packages under current and temperature stress.  相似文献   

8.
This paper is on a novel use of lighting or signaling devices constructed by light-emitting diodes (LEDs) as a positioning beacon. The idea is that the surface of the LED lighting device is divided into regions and used to show different visual patterns that are not noticeable by the human eye due to the high-frequency switching of the LEDs. A digital camera is used as a receiver to capture a sequence of images of the LED positioning beacon transmitter. Image-processing algorithms are used to decode the location code that is encoded in the visual patterns transmitted by the LED device. This idea can be applied to any LED traffic lights or signaling devices on the road and turn them into parts of a positioning beacon system. Such a system made up of high-brightness visible LEDs can provide the function of open-space wireless broadcasting of the positioning signal. The LED signaling method, transmission protocol, camera frame rate, LED flash rate, together with an implemented system and the experimental results, are presented in this paper.  相似文献   

9.
In this paper, to improve the reliability of InGaN white LED Backlight module, we have analyzed the module level accelerated life test (ALT) for LED which is used for the front display in the refrigerator. In addition, we have suggested a screen method that enables to screen out LEDs which have potential leakage problems. The stress factors and levels were decided based on the end user environment in the field. The acceleration factor (AF) was logically calculated according to the stress factor. After 12 h of ALT, we have found one brightness degradation in 6480 LEDs (98 modules). It was found from the failure analysis that the leakage was from the P-pad electrode failure and caused the brightness degradation. We have suggested a method that enables to screen the potential field failure LEDs in mass production which the failure can be occurred by external noise factor. We have added “turn on current level screen” on “operating current level screen”. As a result, we could make possible to screen leakage LEDs effectively which may fail in the end user side. This method was applied by 20 LED makers.  相似文献   

10.
Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two traditional approaches in battery prognosis. However, the parameters in a trained AR model cannot be updated which will cause the under-fitting in the long term prediction and further decrease the RUL prediction accuracy. On the other hand, the measurement function in the PF algorithm cannot be obtained in the long term prediction process. To address these two challenges, a hybrid method of IND-AR model and PF algorithm are proposed in this work. Compared with basic AR model, a nonlinear degradation factor and an iterative parameter updating method are utilized to improve the long term prediction performance. The capacity prediction results are applied as the measurement function for the PF algorithm. The nonlinear degradation factor can make the linear AR model suitable for nonlinear degradation estimation. And once the capacity is predicted, the state-space model in the PF is activated to obtain an optimized result. Optimized capacity prediction result of each cycle is utilized to re-train the regression model and update the parameters. The predictor keeps working iteratively until the capacity hit the failure threshold to calculate the RUL value. The uncertainty involved in the RUL prediction result is presented by PF algorithm as well. Experiments are conducted based on commercial lithium-ion batteries and real-applied satellite lithium-ion batteries. The results have high accuracy in capacity fade prediction and RUL prediction of the proposed method. The real applied lithium-ion battery can meet the requirement of spacecraft. All the experiments results show great potential of the proposed framework.  相似文献   

11.
我国目前的照明主要以低效率的照明为主,LED由于其具有高效、节能、环保、可靠、长寿命等优点,正逐渐进入照明领域,对缓解目前环境恶化和能源短缺有重要意义.LED的性能与驱动电源性能和使用环境密切相关,需要开发出高效可靠的LED专用驱动电源与之配套.当前LED驱动电源存在功率密度、功率因数和效率较低等问题,因此开展高功率密度LED驱动电源的研究意义深远.  相似文献   

12.
The reliability of various types of InGaAsP/InP lasers and LEDs is reviewed with regard to failure modes and systems requirements. A systematic exposition, including the degradation modes that govern lifetime, is given. Optical transmission systems are reviewed in general terms. Surface-emitting LEDs and lasers are mainly discussed; edge-emitting LEDs are considered briefly. Degradation modes of optical devices and spectral aspects of reliability for distributed-feedback (DFB) lasers are described  相似文献   

13.
Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated unpackaged, i.e. as bare dies, as this reduces footprint, thickness and cost. As substrates, low cost materials like polyethylene terephthalate (PET) should preferably be used. However, the use of these materials also imposes limitations. Especially, their low thermal stability limits the maximum temperatures during the processing and the thermal dissipation of the LED during operation will pose constraints on the thermal design. This paper describes the results of research on possibilities for integrating bare die LEDs with such low cost flexible PET foils. Bonding of LED dies on PET substrates with copper circuitry using conductive adhesives was performed. Both anisotropic conducting adhesives and isotropic conducting adhesives were investigated. An experimental comparison is made between the different techniques based on temperature/humidity reliability and flexural stability of the bonded LEDs. Additionally, finite element (FE) thermal modeling results of adhesively bonded LED-on-foil configurations are presented. The role of the different materials and the effect of their geometries on the temperature distribution in the simulated devices are discussed. The results are compared to experimentally observed temperature distributions using infrared thermal imaging in LED on PET foil reference devices. Finally a demonstrator device of 64 LEDs on flexible copper–PET substrate is presented.  相似文献   

14.
Reliability issues in solid state lighting (SSL) devices based on light emitting diodes (LED) is of major concern as it is a limiting factor to promote these optoelectronic devices for general lighting purposes. This postulate is even truer for high power devices in which high current and thus high thermal load are involved. In order to increase reliability and lighting efficacy, LED designs related to thermal management are evolving parallel to LED research and development. However there are still some issues mainly related to the degradation of LED’s constituents with time involving a faster decay of the lightning efficacy. In order to increase reliability of SSL devices, components presenting self-repairing properties could be implemented. In this review we will first briefly expose the state of the art on inorganic semiconductor based LED research and development, trends and challenges that lead to an increase of lighting efficiency. In a second part the different failure mode occurring for SSL devices have been compiled highlighting what are the main mechanism influencing and limiting LED reliability. Strong from this knowledge, in the last part, self-healing concepts will be proposed to further improve LED’s reliability.  相似文献   

15.
Light-emitting diodes (LEDs), which are generally used for indicator lights, have been continuously developed for the past 50 years. With an urgent need for energy conservation and pollution reduction, the trend of replacing traditional incandescent or fluorescent lamps with high-power LEDs is growing more and more popular. Consequently, LEDs have attracted the attention of many industries that incorporate LED researches and designs into their products. However, a low electro-optical conversion efficiency of LEDs can induce a high percentage of input power that transforms into redundant heat. This leads to an increase in the junction temperature, which indicates that thermal management is an important issue in high-power LEDs. In this research, a light degradation test is implemented and a chip-in-substrate-type LED packaging structure is proposed. A finite element (FE) model of the chip-in-substrate-type structure with an effective methodology, which is validated through the forward voltage method, is established. With regard to the design concepts of LED packaging, various parameters of chip-in-substrate-type structure are investigated.  相似文献   

16.
Prognostics and health management of lithium-ion batteries, especially their remaining useful life (RUL) prediction, has attracted much attention in recent years because accurate battery RUL prediction is beneficial to ensuring high reliability of lithium-ion batteries for providing power sources for many electronic products. In the common state space modeling of battery RUL prediction, noise variances are usually assumed to be fixed. However, noise variances have great influence on state space modeling. If noise variances are too small, it takes long time for initial guess states to approach true states, and thus estimated states and measurements are biased. If noise variances are too large, state space modeling based filtering will suffer divergence. Besides, even though a same type of lithium-ion batteries are investigated, their degradation paths vary quite differently in practice due to unit-to-unit variation, ambient temperature and other working conditions. Consequently, heterogeneity of noise variances should be taken into consideration in state space modeling so as to improve RUL prediction accuracy. More importantly, noise variances should be posteriorly updated by using up-to-date battery capacity degradation measurements. In this paper, an efficient prognostic method for battery RUL prediction is proposed based on state space modeling with heterogeneity of noise variances. 26 lithium-ion batteries degradation data are used to illustrate how the proposed prognostic method works. Some comparisons with other common prognostic methods are conducted to show the superiority of the proposed prognostic method.  相似文献   

17.
The paper concerns modelling an influence of self-heating and mutual thermal coupling on power LEDs characteristics. The electrothermal model of a power LED for SPICE software taking into account electric, thermal and optical properties of the considered devices, and particularly mutual thermal coupling between the devices situated on the common heat-sink, is presented. The method of estimating model parameters values is proposed and the method of measuring their own and mutual thermal resistance between power LEDs is described. Using the elaborated model the characteristics of selected diodes are calculated at different cooling conditions of the investigated LED. The obtained results of calculations are compared with the measurements results for a single diode, two diodes situated on the common heat-sink and a LED module.  相似文献   

18.
Because of outstanding optical properties and non‐vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd‐based QD‐LEDs have shown excellent properties, but the eco‐friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD‐LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD‐LEDs with Cd‐free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD‐LED with bottom emission structure shows the luminescence of 530 cd m?2 and the current efficiency of 1 cd/A. To realize the transparent QD‐LED display, the two‐step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD‐LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work‐function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well‐known roll‐off phenomenon in QD‐LED devices.  相似文献   

19.
《Microelectronics Reliability》2014,54(6-7):1143-1149
This paper presents an extensive analysis of the robustness of state-of-the-art RGB LEDs and LED modules submitted to Electrostatic Discharges (ESD). We studied both single RGB LEDs, and small modules constituted by the series connection of 2, 3, and 4 monochromatic LEDs. ESD events were simulated by a Transmission Line Pulser (TLP), capable of generating voltage pulses with a duration of 100 ns and increasing amplitude: after each of the pulses the electrical and optical parameters of the devices were monitored, with the aim of describing the effects of ESD events on the performance of the devices. The results indicate that: (i) the ESD robustness strongly depends on the LED wavelength; InGaN-based LEDs (the green and the blue LEDs) have a lower robustness with respect to the AlInGaP devices (i.e., red LEDs); (ii) non-destructive ESD events can induce significant modifications in the performance of the devices even below the failure voltage/current level; (iii) the ESD robustness of LED modules strongly depends on the robustness of each LED of the chain, and on the variability of the devices. The results presented in this paper provide important information for the design of high robustness multi-LED systems.  相似文献   

20.
In the following study, we demonstrated linear cascade GaN-based light-emitting-diode (LED) arrays at a wavelength of approximately 520 nm. Experimental LEDs were analyzed with the goal to improve the output power and differential efficiency of a single LED. The study shows that using arrays with up to four LEDs connected in series, we can achieve four times the improvement in output power (differential quantum efficiency) under the same bias current as compared to a single LED apparatus. We have also measured the modulation-speed performance of experimental LEDs, and both devices exhibit similar 3-dB bandwidth (90 MHz) under the same bias currents. Experimental results indicate that the cascade connection offers the advantages of significantly enhanced external differential efficiency and provision of a method to use a constant-voltage power supply. The current crowding problem and resistance-capacitance-limited bandwidth degradation issues in a large active area LED can also be minimized using the connection demonstrated in our experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号