首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 55 毫秒
1.
《计算机工程》2019,(4):114-118
针对社交网络的边权重隐私泄露问题,提出一种权重社交网络隐私保护算法。利用无向有权图表示社交网络,把边权重序列作为一个无归属直方图处理,将包含敏感信息的权重加入拉普拉斯噪声以满足差分隐私保护要求。为减少噪音量,对直方图中具有相同计数的桶合并成组,根据组间k-不可区分性来保证差分隐私保护要求,通过对原始的权重序列进行一致性推理保持网络最短路径不变。理论分析和实验结果表明,该算法能够满足差分隐私保护要求,且提高了信息发布的准确性和实用性。  相似文献   

2.
为解决大型社交网络隐私保护中的复杂度过高及可用性差的问题,提出一种基于随机投影及差分隐私的社交网络隐私保护算法。利用随机投影对社交网络图的邻接矩阵进行指定投影数量的降维,进一步在降维后的矩阵中加入少量高斯噪声生成待发布矩阵。该算法满足(ε,δ)-差分隐私定义且能保持用户间欧氏距离的可计算性不变。实验和对比分析结果表明,该算法较传统差分隐私能大幅提升数据可用性且计算复杂性较小,适用于大规模社交网络隐私保护。  相似文献   

3.
针对数据供应商发布社交网络数据时可能出现的泄露隐私问题,提出一种基于生成对抗网络的隐私保护方法(GPGAN)。采用GAN作为学习模型捕捉网络结构的随机游走,设计奖励函数指引创建包含重要信息的随机游走。提出基于游走样本的匿名图构造方法,通过添加差分隐私得到匿名概率邻接矩阵,重构社交网络图。实验结果表明,与其它图生成相比,该模型具有良好的图结构特征学习能力。通过度量评估实验验证了GPGAN可以在合理的隐私预算下保留所需的数据效用,优于当前主流的社交网络隐私保护方法。  相似文献   

4.
针对权重社交网络差分隐私保护算法中噪声添加量过大以及隐私保护不均衡问题,提出了一种结合谱聚类算法与差分隐私保护模型的隐私保护算法SCDP.首先针对传统差分隐私保护算法直接向社交网络边权重添加噪声方式带来的噪声添加量过大的问题,结合谱聚类算法,将权重社交网络聚类成为不同的簇,对不同的簇采取随机添加噪声的方式,降低噪声的添...  相似文献   

5.
链路预测(link prediction)是社交网络中社交关系预测和推荐的重要手段,然而链路预测过程中需要大量用户个人信息,带来了极大的隐私泄露的危险.用户很可能拒绝提供链路预测需要的信息,这将导致链路预测效果的下降,从而会进一步伤害用户体验.为了打消用户隐私泄露的顾虑,激励用户为链路预测提供更多的数据,提出了一种社交网络链路预测的个性化隐私保护方法.摆脱了对服务商的完全依赖,让用户和服务商共同合作来完成链路预测;为敏感信息和非敏感信息添加不同强度的噪声干扰,保护敏感链路不被泄露的同时维持较好的链路预测效果;并根据用户个性化的隐私设置,保证用户的敏感链路不会被公开的非敏感链路反推.最后,理论证明了提出的方法可以满足ε-差分隐私,并在真实数据集上验证了PrivLP能够在维持较高的链路预测准确性的前提下有效提升隐私保护效果.  相似文献   

6.
针对社交网络边权重隐私保护中的弱保护和最短路径不可分析问题,提出一种满足差分隐私保护模型的边权重保护策略。将社交网络划分为全次图、缺次图、零次图,设计扰动方案及查询函数,对不同图进行查询获取其边权重并按扰动方案对不同的边权重添加不同的Laplace噪声,实现抵御攻击者拥有最大背景知识的攻击的边权重隐私保护,保证一组节点的最短路径不变,且其长度与原路径长度相近。该策略有强保护性及最短路径可分析性,从理论上验证了算法的可行性,通过实验验证了算法的正确性。  相似文献   

7.
随着Facebook的上市,社交网络再次成为全球的焦点,网络中无时无刻不在产生用户数据,通过对海量的非结构化数据进行价值挖掘,社交网络引领其他互联网领域的应用率先进入大数据时代。本文描述了现阶段社交网络的特点及其对当今社会的影响,并对其存在的安全问题进行了分析,最后给出了相应的对策。  相似文献   

8.
刘华玲  郑建国  孙辞海 《信息与控制》2012,41(2):197-201,209
提出了一种基于高斯随机乘法的社交网络隐私保护方法.该算法利用无向有权图表示社交网络,通过高斯随机乘法来扰乱其边的权重,保持网络最短路径不变并使其长度应与初始网络的路径长度尽可能接近,以实现对社交网络的隐私保护.从理论上证明了算法的可行性及完美算法的不存在性.采用这种随机乘法得到的仿真结果符合理论分析结果.  相似文献   

9.
张书旋  康海燕  闫涵 《计算机应用》2019,39(5):1394-1399
随着社交软件的流行,越来越多的人加入社交网络产生了大量有价值的信息,其中也包含了许多敏感隐私信息。不同的用户有不同的隐私需求,因此需要不同级别的隐私保护。社交网络中用户隐私泄露等级受社交网络图结构和用户自身威胁等级等诸多因素的影响。针对社交网络数据的个性化隐私保护问题及用户隐私泄露等级评价问题,提出基于Skyline计算的个性化差分隐私保护策略(PDPS)用以发布社交网络关系数据。首先构建用户的属性向量;接着采用基于Skyline计算的方法评定用户的隐私泄露等级,并根据该等级对用户数据集进行分割;然后应用采样机制来实现个性化差分隐私,并对整合后的数据添加噪声;最后对处理后数据进行安全性和实用性的分析并发布数据。在真实数据集上与传统的个性化差分隐私方法(PDP)对比,验证了PDPS算法的隐私保护质量和数据的可用性都优于PDP算法。  相似文献   

10.
社交网络边权重表示节点属性相似性时,针对边权重能导致节点敏感属性泄露的问题,提出一种利用差分隐私保护模型的扰动策略进行边权重保护。首先根据社交网络构建属性相似图和非属性相似图,同时建立差分隐私保护算法;然后对属性相似图及非属性相似图边权重进行扰动时,设计扰动方案,并按扰动方案对属性相似图及非属性相似图进行扰动。实现了攻击者无法根据扰动后边权重判断节点属性相似性,从而防止节点敏感属性泄漏,而且该方法能够抵御攻击者拥有最大背景知识的攻击。从理论上证明了算法的可行性,并通过实验验证了算法的可行性及有效性。  相似文献   

11.
图卷积神经网络是一种面向多任务且应用广泛的深度学习模型。文章研究了去中心化场景中谱域图卷积神经网络节点关系信息和节点特征信息的保护问题,提出双重差分隐私保护机制下的谱图卷积神经网络DDPSGCN。在给定隐私预算总额的条件下对拉普拉斯机制和高斯机制进行隐私预算分配,并通过隐私损失和Chernoff界理论进行参数估计。在两大分布噪声扰动作用基于不同图数据信息的隐私保护下,文章提出基于区块链去中心化差分隐私处理机制的图卷积神经网络训练算法。实验表明文章采用的去中心化双重差分隐私机制,能够在半监督节点分类任务准确率下降1%以内的前提下确保原始数据隐私不泄露,相较于单隐私保护机制有着更高的隐私保护效率和更强的对抗攻击鲁棒性。  相似文献   

12.
详细介绍了社会网络模型的演化历程以及三元闭包在社会网络中的重要作用,在社会网络中新节点的连接对以后的连接具有一定的影响,鉴于三元闭包在社会网络演化过程中具有的巨大作用以及BA无尺度网络模型本身具有的局限性,提出了一种基于三角形演化机制的社会网络模型。通过仿真实验得出该网络模型遵循幂率分布,与BA模型相比该社会网络模型有更强的鲁棒性、较小的聚集系数和较大的平均路径长度。  相似文献   

13.
针对动态社会网络数据多重发布中用户的隐私信息泄露问题,结合攻击者基于背景知识的结构化攻击,提出了一种动态社会网络隐私保护方法。该方法首先在每次发布时采用k-同构算法把原始图有效划分为k个同构子图,并最小化匿名成本;然后对节点ID泛化,阻止节点增加或删除时攻击者结合多重发布间的关联识别用户的隐私信息。通过数据集实验证实,提出的方法有较高的匿名质量和较低的信息损失,能有效保护动态社会网络中用户的隐私。  相似文献   

14.
现有的社交网络去匿名方法主要是基于网络结构,对网络结构进行学习与表示是去匿名的关键。用户身份链接(user identity linkage)的目的是检测来自不同社交网络平台的同一个用户。基于深度学习的跨社交网络用户对齐技术,很好地学习了不同社交网络的结构特征,实现了跨社交网络的用户对齐。将该技术用于同一社交网络匿名用户识别,实验结果优于传统去匿名方法。  相似文献   

15.
社交网络中积累的海量信息构成一类图大数据,为防范隐私泄露,一般在发布此类数据时需要做匿名化处理.针对现有匿名方案难以防范同时以结构和属性信息为背景知识的攻击的不足,研究一种基于节点连接结构和属性值的属性图聚类匿名化方法,利用属性图表示社交网络数据,综合根据节点间的结构和属性相似度,将图中所有节点聚类成一些包含节点个数不小于k的超点,特别针对各超点进行匿名化处理.该方法中,超点的子图隐匿和属性概化可以分别防范一切基于结构和属性背景知识的识别攻击.另外,聚类过程平衡了节点间的连接紧密性和属性值相近性,有利于减小结构和属性的总体信息损失值,较好地维持数据的可用性.实验结果表明了该方法在实现算法功能和减少信息损失方面的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号