首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对含钴0.78%的某难选氧化钴矿,采用流态化还原焙烧-磁选获得含钴磁选精矿。探讨了还原温度、还原时间、还原剂(H2)浓度及总气体流量等影响因素对焙烧产品分选指标的影响,并利用XRD、SEM和VSM等方法,研究了还原焙烧过程矿物物相的转化。结果表明,原料中褐铁矿与水钴矿嵌布关系密切,少量水钴矿包裹在褐铁矿中;采用流态化还原焙烧-磁选方法可实现钴的有效富集;当焙烧温度650℃、焙烧时间30min、H2浓度30%、总气体流量1000mL/min时,焙烧产品经弱磁选后可获得Co品位6.95%、Co回收率45.41%,TFe品位58.06%、TFe回收率55.78%的磁选精矿;还原焙烧过程中,钴氧化物、赤铁矿和褐铁矿生成强磁性金属钴和磁铁矿,焙烧产品的磁性显著增强,扩大了有用矿物与脉石矿物之间的磁性差异,有利于有用矿物的富集。研究结果为难选氧化钴矿的有效利用提供了新途径。  相似文献   

2.
针对铁品位32.79%、磁性率(FeO/TFe)5.49%的固阳难选褐铁矿, 进行了回转窑磁化焙烧-磁选扩大实验。采用SEM和XRD对原矿物性结构及成分以及磁化焙烧过程中的物相演变进行了分析。通过单因素实验和正交实验确定了最佳工艺指标以及不同因素对实验结果的影响程度。结果表明, 原矿在焙烧温度750 ℃、配煤量7%、焙烧时间40 min条件下焙烧, 所得焙烧矿通过阶段磨矿、阶段磁选可获得铁品位61.62%、铁回收率82.54%的铁精矿。  相似文献   

3.
新疆某镜铁矿矿石TFe含量为35.20%,CaO含量为30.64%;铁矿物主要为镜铁矿,脉石矿物主要为方解石和石英。矿石中镜铁矿嵌布粒度微细,属于难选铁矿石。为考察矿石磁化焙烧过程物相转变规律,进行了焙烧温度、焙烧时间和配煤比对其磁化焙烧效果、铁物相转变过程的影响规律试验。结果表明:在配煤比为12%、焙烧温度为800 ℃、焙烧时间为75 min条件下还原焙烧后,焙烧产品磨细至-0.074 mm占90%,在磁场强度为120 kA/m条件下弱磁选,可获得铁品位为65.95%、回收率77.70%的指标。焙烧温度对镜铁矿磁化焙烧过程影响显著。焙烧温度低于800 ℃时镜铁矿磁化焙烧转变为Fe3O4,焙烧温度为800 ℃时,焙烧产品Fe3O4含量最高;焙烧温度高于800 ℃时,部分Fe3O4又被还原为FeO,产生过还原现象;焙烧温度为900 ℃时,焙烧产品FeO含量最高;焙烧温度达到1 000 ℃时部分FeO被还原成金属Fe。此过程与磁选结果的变化规律相符。另外,焙烧温度达到900 ℃时,部分Fe2O3与CaO反应,生成了2CaO·Fe2O3,不能通过弱磁选回收。试验结果为该镜铁矿资源的合理利用提供了技术参考。  相似文献   

4.
以拜耳法赤泥为原料,首先采用氢气预还原,再配碳进行二次还原,最后磁选。探究了还原过程中氢气流速、还原温度、配碳量、保温时间等因素对还原铁粉回收率和品位的影响。结果表明,在赤泥与碳酸钠质量比为100∶5、氢气流速2600 mL/min、温度1000℃、保温时间120 min、碳粉与一次还原后的赤泥质量比为1∶5的条件下,可得到品位为93.19%、回收率为79.53%的还原铁粉。产品可直接用于粉末冶金领域及钛白粉行业。微观分析表明,气固反应和固固反应相结合更容易加深Fe2O3向Fe的转变程度,以碳酸钠为添加剂可以提高还原反应的效果。  相似文献   

5.
针对高磷铁矿因铁矿物与磷矿物共生关系复杂、常规选矿方法难以高效利用的特点,提出了焙烧—浸出的提铁降磷技术。对阿尔及利亚TFe品位为60.81%、FeO含量为14.92%、P含量为0.71%的某高磷铁矿,采用悬浮焙烧(氧化焙烧—磁化焙烧)—磁选—浸出工艺开展了提铁脱磷实验研究,在氧化温度1 050℃、还原温度520℃、还原时间25 min、H2体积浓度50%的磁化焙烧工艺条件下,获得了TFe品位65.50%、TFe回收率96.31%、P含量0.16%的铁精矿指标,磷脱除率77.46%。实验研究结果可为高磷铁矿提铁降磷提供指导。  相似文献   

6.
河南灵宝某黄金冶炼厂焙烧氰化尾渣TFe品位为30.71%,针对此尾渣开展了强磁预选—直接还原焙烧—弱磁选联合提铁研究。经磁场强度为1 513 kA/m的湿式强磁预选,获得TFe品位44.96%、回收率78.27%的粗精矿。当粗精矿、烟煤和氧化钙的质量比为1∶0.2∶0.2、还原温度为1 200℃、还原时间为90min时,粗铁精矿经直接还原焙烧、二段磨矿、二段弱磁选处理,获得TFe品位为92.43%、回收率为93.21%的还原铁粉,相对于氰化尾渣的产率达24.24%。该工艺为焙烧氰化尾渣中极难选含铁资源的高效利用提供了新途径。  相似文献   

7.
内蒙古包头市固阳地区干旱少雨,复杂难选的赤铁矿石分布广泛,原矿TFe品位仅为13.51%,传统磁选设备分选指标较差,产品竞争力不足。为此,研究新型三级干式永磁筒式磁选机分选品位的影响因素,在风速为5 m/s的条件下,考察了不同磁辊分布方式下转速及入选矿石粒度对永磁干式磁选试验指标的影响。结果表明,磁辊高中低排布时滚筒最佳转速为120 r/min,磁辊低中高排布时滚筒最佳转速为140 r/min;磁滚筒磁场排布为高中低时,分选效果要优于低中高的磁场排布,此时精矿的产率和TFe品位指标更优;对于该新型永磁干式磁选机,较好的工作参数为滚筒磁场强度由上至下排布为0.23 T、0.17 T、0.11 T,转速为120 r/min,入料粒度为-2 mm,此时能够获得精矿TFe品位34.62%、尾矿TFe品位10.95%。试验结果为进一步提高三级干式永磁筒式磁选机的性能提供了技术参数,同时为低品位赤铁矿石资源开发和利用提供了研究基础。  相似文献   

8.
以河北承德某铁品位为61.08%,TiO2品位为7.66%的钒钛磁铁精矿为研究对象,进行了钒钛磁铁精矿深度还原-磁选试验研究。考察了还原温度、还原时间、C/O摩尔比、CaCO3添加量对还原产物和分选指标的影响。在还原温度为1350℃、还原时间120min、C/O摩尔比2.5、CaCO3添加量为16%、磁选场强为85mT的条件下,可以得到全铁品位为87.19%、铁回收率为82.62%的磁性产品和TiO2品位18.76%、TiO2回收率为79.40%非磁性产品。由还原产物的金属化率与XRD分析得知,钛磁铁矿向铁氧化物、钛氧化物和金属铁的转化较难发生,适当增加CaCO3的用量,能促进钛磁铁矿向CaTiO3、铁氧化物和金属铁的转化。   相似文献   

9.
张毅  余莹  张五志  高鹏 《金属矿山》2021,50(7):142-145
为了确定适宜的磁化焙烧条件,采用磁化焙烧—磁选工艺,对鞍钢某铁尾矿进行了系统的试验研究,考察了焙烧温度、焙烧时间、还原气体浓度以及气体流速对磁化焙烧效果的影响,结果表明:①鞍钢铁 尾矿TFe品位为14.70%,主要杂质SiO2含量为66.17%,有害元素P、S、Na的含量较少;铁尾矿中的铁主要以赤、褐铁矿的形式存在,分布率为83.87%;铁尾矿中主要有用矿物为磁铁矿、赤铁矿,主要脉石矿物为石英。 ②该铁尾矿适宜的焙烧条件为:焙烧温度580 ℃、焙烧时间5 min、CO浓度30%、气体流速500 mL/min;在此条件下获得的焙烧产品,经弱磁选(磁场强度为87.12 kA/m)选别,可获得TFe品位62.17%、TFe回收率 84.02%的磁选精矿。③焙烧产品的铁物相分析结果表明,经过磁化焙烧,试样中磁性铁的含量和分布率显著提高,赤、褐铁矿中的铁含量和分布率则大幅度降低。不同焙烧时间下产品的XRD谱图结果进一步说明铁尾矿 中的赤铁矿转换成了磁铁矿。研究结果可为同类型尾矿的开发利用提供参考。  相似文献   

10.
以印尼某海滨钛磁铁矿为原料, 煤泥作还原剂, 研究了煤泥种类及用量、添加剂用量和直接还原焙烧过程中的焙烧时间、焙烧温度等对铁产品TFe品位与回收率、TiO2含量的影响。结果表明, 煤泥可代替煤粉作还原剂;通过煤泥与添加剂的共同作用, 能够达到降低最终直接还原铁中钛含量的目的。在煤泥TJ用量18%、添加剂YSE用量8%、YHG用量3%, 1 250 ℃下焙烧60 min时, 得到的焙烧产物经过两段磨矿两段磁选, 最终铁产品中全铁品位达92.72%, 回收率达91.93%, TiO2含量降至0.72%。  相似文献   

11.
采用直接还原技术研究了印尼某海滨砂矿弱磁选精矿的综合利用, 考察了助还原剂NCP用量、还原剂烟煤用量、还原温度、还原时间等条件对铁还原效果的影响。结果表明: 在NCP用量 7.5%, 烟煤用量17.5%, 还原温度1 150 ℃, 还原时间90 min的条件下进行直接还原, 再经磨矿-弱磁选所得的粉末铁精矿TFe品位可达91.06%, 回收率达97.27%, 同时得到富钒钛渣, 为进一步利用钒和钛创造了条件。  相似文献   

12.
以湖南某低品位赤铁矿石低温快速直接还原球团为对象,通过弱磁选、激光粒度分析、SEM、XRD和XPS等技术手段研究了磨矿过程对球团中金属铁的氧化及后续磁选的影响。研究结果表明:①直接还原球团铁品位为31.18%,金属铁含量为26.45%,金属化率达到84.83%,SiO2含量为43.63%,金属铁多为集合体,呈蠕虫状或星点状分散于脉石矿物中,结晶粒度微细,粒径一般为10~30 μm,最大为400 μm。②延长磨矿时间,磨矿产品中铁的金属化率明显下降,磨矿10 min时铁的金属化率为82.24%,磨矿40 min时铁的金属化率降至71.67%;磁选精矿铁品位先大幅度上升后小幅下降,铁回收率先小幅上升后明显下降,铁金属化率明显下降;磁选精矿平均体积粒径、D50、D10均呈先快后慢的下降趋势,金属铁的单体解离度呈先快后慢的上升趋势;磨矿10 min时磁选精矿铁的金属化率为81.10%,磨矿40 min时铁的金属化率降至62.99%。③延长磨矿时间,磨矿产品中金属铁的衍射峰减弱,Fe3O4的衍射峰从无到有,从弱到强。Fe 2p3/2轨道结合能随着磨矿时间的延长而升高,金属铁颗粒表面的氧化程度加深。④SEM-EDS分析表明,磁选精矿金属铁颗粒表面与氧发生了结合,且磨矿时间越长氧含量越高,絮状含铁区域也呈现这样的特征。综上所述,还原球团中的金属铁在磨矿过程会发生氧化,且磨矿时间越长氧化程度越高。  相似文献   

13.
针对某种超微细难选赤铁矿采用压球后还原焙烧-磨矿磁选工艺,研究了还原时间对难选铁矿石原矿压球后还原焙烧的影响.破碎至-4 mm铁矿石原矿加入内配煤、粘结剂压球后模拟工业还原焙烧条件在实验室进行了还原焙烧.研究发现,不同还原时间对还原焙烧球强度和还原焙烧效果影响较大.还原焙烧时间为30 min时焙烧球不出现粘结碎裂等现象,强度可以满足后续工艺要求,经磨矿磁选得到的产品铁品位和回收率最高.X射线衍射(XRD)和扫描电子显微镜(SEM)分析发现,还原时间为30 min时生成的金属铁量最多,金属铁颗粒嵌布粒度较粗,且与脉石矿物界限分明,因此可以提高产品的铁品位和回收率.  相似文献   

14.
采用煤基直接还原焙烧—磁选工艺对硫酸渣进行焙烧回收铁的试验研究,考察了还原剂、助熔剂、焙烧温度、焙烧时间等因素对焙烧效果的影响。结果表明:还原剂用量为30%,助熔剂CaO和Na2SO4的用量分别为15%和20%,在焙烧温度为950℃条件下焙烧50 min,最终得到直接还原铁的TFe品位为91.89%,TFe的回收率为82.26%,S残余含量0.03%。该直接还原铁可用作电炉炼钢原料。试验工艺对硫酸渣的综合利用和环境保护有着重要的经济和实用价值。   相似文献   

15.
以云南某中低品位磷矿为研究对象,以焦粉为还原剂,通过XRD、SEM及EDS等分析手段,探讨了还原温度和保温时间对该磷矿真空碳热还原的影响。结果表明,升高还原温度和延长保温时间均能提高磷矿还原率和磷元素挥发率,且还原温度的影响比保温时间的影响更显著。当保温时间30 min、温度高于1 250 ℃时,磷矿还原率和磷挥发率上升趋势显著,最佳还原温度段为1 250~1 300 ℃。磷矿中的Ca5(PO4)3F首先与SiO2反应,然后大部分Ca5(PO4)3F和副产物Ca3(PO4)2与C作用,产生P2单质气体。  相似文献   

16.
通过化学分析、X射线衍射(XRD)分析、扫描电镜(SEM)分析等检测方法,对某鲕状赤铁矿深度还原矿进行了组成特性研究,查明了Fe元素的赋存状态,并根据其组成特性制定了相应的选别流程。试验结果表明,该鲕状赤铁矿深度还原产品采用三段磁选 细筛流程可以获得品位为88.24%,金属化率为94.99%的深度还原铁粉,金属铁的回收率为80.13%,所得产品可直接作为炼钢的原料。  相似文献   

17.
对某低品位铁矿石直接还原过程中原矿粒度对焙烧效果的影响进行了研究, 重点研究了还原剂用量和还原时间在原矿粒度增大时对焙烧效果的作用。结果表明, 原矿粒度的增大会小幅降低铁产品的品位, 但大幅降低其回收率, 增大还原剂用量和延长还原时间均能在一定程度上改善焙烧效果, 在原矿粒度小于4 mm时, 可取得良好的焙烧指标。SEM和XRD结果显示, 随原矿粒度的增大, 金属铁的颗粒变小, 且主要在焙烧矿颗粒表面生成, 在颗粒内部则生成大量的铁橄榄石等难还原物质, 在磁选过程中损失于脉石中, 进而降低铁的回收率。  相似文献   

18.
采用煤基直接还原焙烧工艺对内蒙古黄岗含砷、锡铁精矿进行了焙烧脱除砷锡试验研究。考察了焙烧工艺、焙烧气氛及氯化剂用量等工艺参数对产品中砷、锡脱除效果的影响。结果表明, 砷主要是在中性焙烧阶段被氧化脱除, 锡是在还原焙烧阶段与氯化剂反应生成易挥发的氯化物挥发脱除。综合试验结果表明, 在优化条件下, 还原焙烧-磁选得到直接还原铁产品中TFe品位及回收率均达到88%, As残余含量0.03%, Sn残余含量0.07%。  相似文献   

19.
为了回收白云鄂博铁矿选铁尾矿中的铁矿物,采用强磁预富集-悬浮磁化焙烧-磁选工艺进行铁矿物再选试验。结果表明:TFe品位为14.10%的白云鄂博铁矿选铁尾矿经磁选预富集所得精矿在总气量600 mL/min、CO浓度15%、焙烧温度800 ℃、焙烧时间5 min条件下焙烧后,焙烧产品磨细至d90=39.29 μm,在磁选管磁场强度为10.56 kA/m时,可获得TFe品位为63.88%、对原矿回收率为57.25%的磁选精矿。对试验各阶段产品分析表明,焙烧温度过高、焙烧时间过长会导致过还原,同时焙烧过程使得预富集精矿中表面光滑无裂纹的赤铁矿变为表面伴有微裂纹的磁铁矿。研究结果为多金属共(伴)生铁矿资源的高效利用提供了理论基础。  相似文献   

20.
关翔 《中国矿业》2012,21(1):82-86,89
对某含铁品位为24.05%、磁性率(FeO/TFe)为0.6%的难选赤褐铁矿矿石进行了选矿试验研究。考查了该矿石的矿物工艺学和磨矿特性,重点研究了还原焙烧-磁选分选情况。确定还原焙烧-磁选可以获得较好的选别指标为:精矿铁品位达58%以上,铁回收率60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号