首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the amounts of several components of the photosyntheticelectron-transport system during greening of etiolated barleyleaves were studied on a "per plastid" basis. P700 and QA, whichwere initially absent from etioplasts, appeared 2 h after thestart of illumination in complete complexes of PS I and PS II,respectively. From 6 h, they increased rapidly in amount witha constant stoichiometric ratio of 1:1. Amounts of Cyt f, Cytb6, Cyt b-559 and FeS, initially present in etioplasts at levelsthat were one-third to half of those in mature chloroplasts,also increased rapidly after 6 h of illumination. The molarratio of Cyt f, Cyt b6 and Cyt b-559 was the same in etioplastsand in mature chloroplasts, namely 1:2:2. After 4 h of illumination,levels of FeS increased at nearly the same rate as those ofthe PS I complex. The increase in levels of all components wasmarked after 6 h of illumination, probably due to the energysupplied by developing plastids that had just become photosyntheticallycompetent. The results are discussed in relation to the timeof appearance of chlorophyll-protein complexes and photochemicalactivities. 1 Present address: Department of Botany, Faculty of Science,Kyoto University, Kyoto, 606-01 Japan.  相似文献   

2.
Cells, of Synechococcus sp. PCC 7002 showed a low oxidationlevel of P700 under a far-red light at 6 W m–2 which inducednearly complete oxidation of P700 in spinach leaves, and a strongerfar-red light was required to observe the oxidation of P700.DCMU did not affect the level of P700+2 but 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneinduced the oxidation of P700 under far-red light, indicatingthat the low oxidation level of P700 was due to the donationof electrons to P700+2 from the cytosolic respiratory donorsthrough the intersystem chain at the plastoquinone pool. Theelectron transfer from the cytosolic donors to the intersystemchain was inhibited by HgCl2 but not by antimycin A. The reductionof P700+ in Synechococcus cells, after illumination by strongfar-red light was mostly accounted for by the electron flowto the inter system chain from the respiratory donors (t  相似文献   

3.
Washing spinach chloroplasts with high-concentration Tris-saltbuffers induced various types of anion-dependent changes inthe electron flow and photophosphorylation in chloroplasts. Tris-HCl buffer caused enhancement of NADP photoreduction andinhibition of phosphorylation. Tris-HNO3 buffer, on the otherhand, caused inhibition of both electron flow and phosphorylationand decreased trypsin-activated Ca2+-dependent ATPase activity.Tris-H2SO4 and Tris-H3PO4 buffers, however, had no effect onthe rates of electron flow and photophosphorylation. Determination of the presence of the coupling factor (as measuredby ATPase activity) revealed a normal enzyme activity levelin chloroplasts washed with Tris-HCl or Tris-H2SO4 buffer. Removalof the coupling factor by EDTA from chloroplasts washed withTris salts inhibited phosphorylation severely. Phosphorylationactivity could be partially restored by reconstitution withthe coupling factor in die presence of Mg2+. In addition to their different effects on electron flow, Tris-HCland Tris-HNO3 induced a marked decrease in phosphorylative activityitself. The much decreased rate of phosphorylation can be explainedby the release of the coupling factor and by damage to the high-energystate generating mechanism by Tris-HNO3-washing and by modificationof the coupling factor in the case of Tris-HCl-washing. 1Present address: Biology Department, College of Science andEngineering, Ryukyu University, Naha, Okinawa. Japan. (Received June 27, 1972; )  相似文献   

4.
Chemiluminescence of luminol (CLL) was induced by illuminatedspinach chloroplast fragments. CLL was diminished by superoxidedismutase or under anaerobic conditions and increased by anautoxidizable electron acceptor, methyl viologen. The optimumpH for CLL was 10.0-10.5. Ferredoxin and cytochrome c reducing substance (CRS) did notaffect the intensity of CLL, but accelerated the dark decayin the absence of methyl viologen. In the presence of methylviologen, ferredoxin and CRS lowered the intensity and acceleratedthe dark decay. 3-(4-Chlorophenyl)-1,1-dimethylurea diminishedCLL. Carbonylcyanide m-chlorophenylhydrazone accelerated theinitial rate of CLL increase at low concentration and inhibitedit at high concentration. Half-decay time of CLL after the cessationof light was shortened by inhibiting electron transfer on theoxidizing side of photosystem II. We conclude that most of the CLL observed in illuminated chloroplastsis dependent on O2. The results also suggest that O2is reduced by reduced ferredoxin or CRS and oxidized on theoxidizing side of photosystem II. The half life of O2in illuminated chloroplasts was estimated from the half-decaytime of CLL to be a few sec. 1 Present address: Kyushu Dental College, Department of Biology,Kitakyushu 803, Japan. (Received May 30, 1977; )  相似文献   

5.
By treating a FA/FB-depleted P700-Fx core from SynechococcusPCC 6301 with diethylether, most of the phylloquinone was removedwithout loss of P700. The 1 ms decay of P700+ in the originalcore was replaced by the 25 ns decay, which was interpretedas the backreaction occurring in a P700+  相似文献   

6.
To study possible changes in the transport metabolites betweenchloroplasts and cytoplasm during CAM induction of Mesembryanthemumcrystallinum, we compared substrate specificity of P11 translocator(s)in isolated chloroplasts from the C3 and CAM-induced plants.The [14C]glu-cose 6-phosphate (G6P) transport activity was significantonly in the chloroplasts of CAM-mode plants and not detectablein those of C3-mode, while a similar high rate of [32P]Pi uptakewas observed with both types of chloroplasts. Kinetic analysisof G6P uptake in the CAM chloroplasts showed a high Vmax [10.6µmol (mg Chl)–1 h–1] and a comparatively lowKm value (0.41 mM); the latter was similar to Ki values of Pi,3-phosphoglycerate and phospho-enolpyruvate, 0.30, 0.34 and0.47 mM, respectively. On the other hand, [32P]Pi uptake inthe CAM chloroplasts was inhibited competitively by G6P witha Ki value (8.4 mM) 20-fold higher than the Km value for G6Puptake, while that in C3 chloroplasts was not inhibited at all.These results suggest that a new G6P/Pi, counterexchange mechanismis induced in the chloroplast envelope of CAM-induced M. crystallinumin addition to the ordinary type of P, translocator, that cannottransport G6P, already present in the C3-type chloroplasts. (Received March 17, 1997; Accepted May 10, 1997)  相似文献   

7.
Time course analysis of RNA contents of tissue discs after cuttingdisclosed a remarkable increase in total RNA during the first12 hr after cutting and this elevated level remained unchangedfor 48 hr. The elevated RNA level at 24 hr of incubation wasnot changed by subsequent HgCl2 treatment. The incorporationrate of the label from 3H-uridine into RNA rapidly increasedimmediately after cutting and reached a maximum at about 9 hrof incubation, then decreased sharply until 24 hr and continuedto decrease gradually thereafter. The incorporation rate at24 hr of incubation was not changed by subsequent HgCl2 treatment.The results of polyacrylamide gel electrophoresis indicatedthat bulk RNA was synthesized most actively at 9 hr of incubationthen the rate of RNA synthesis decreased gradually. (Received August 26, 1977; )  相似文献   

8.
The functional pool size of electrons in the intersystem chainof the chloroplasts of maize was estimated to be about 25 perP700 by the redox change in P700 with single- and multiple-turnoverlights under far-red light in intact leaves. This is about twicethe pool size observed in C3 plants. Furthermore, the stromalpool size of electrons that can be donated to P700+ after actinicillumination was larger in maize leaves than in leaves of C3plants, giving a maximum value of 225 electrons per P700. Maizeleaves showed an increase in the yield of modulated Chl fluorescenceafter turning off of actinic light, which confirms the donationof electrons in the dark to the intersystem chain from the stromaldonors that accumulated during actinic illumination. We proposethat the mesophyll chloroplasts are responsible for a high levelof electron-donating activity to the intersystem chain fromstromal donors such as triose phosphates and malate with NADPHas an intermediate. The level of P700+ under strong far-redlight was decreased after actinic illumination, suggesting theoperation of an actinic light-triggered cyclic electron flowin chloroplasts of the bundle sheath cells. (Received August 14, 1992; Accepted October 13, 1992)  相似文献   

9.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

10.
Chloroplast development was followed in intact bean leaves illuminatedwith far-red light by extracting chloroplasts at various timesto assay photosynthetic activities. Photochemical activity wasdetected in isolated chloroplasts prior to the times which werepreviously reported for intact leaf discs. Cyclic phosphorylationwas observed in isolated chloroplasts after 8 h of far-red illuminationwhile non-cyclic electron transport and phosphorylation weremeasurable after 12 and 16 h of illumination respectively. TheP/2e ratios were less than 0.5 after 24 h of far-red exposurebut approached a value of 1.0 by 60 h of illumination. Ammoniumchloride (10–3 M) had little effect on electron transportin isolated chloroplasts until after 24 h of far-red illumination.Chlorophyll a accumulated slowly from the onset of far-red illuminationwhile chlorophyll b was not detected until after 48 h of far-redexposure. Leaf fresh weight increased four-fold over the 60h illumination period. Electron microscopy of isolated chloroplasts from far-red-illuminatedleaves indicated the presence of unfused primary thylakoidsby 12 h of exposure and prolamellar bodies throughout the entire60 h illumination period. Grana were not observed in isolatedchloroplasts nor were they induced by a 2 min exposure of thechloroplasts to 172 000 lx of white light. O2 evolution in leaf discs of far-red-illuminated plants wasmeasurable after 16 h of illumination, attained a maximum valueby 36 h of far-red exposure, and then declined. Net CO2 fixationwas observed in leaf discs after 8 h of far-red illuminationand the rates remained constant for an additional 16 h, beforeincreasing at least two-fold.  相似文献   

11.
The Extent of Starch Turnover in Mature Pepper Leaves in the Light   总被引:2,自引:0,他引:2  
GRANGE  R. I. 《Annals of botany》1984,54(2):289-292
The extent of starch turnover in pepper leaves in the lighthas been estimated. After leaves were labelled with 14CO2 atconstant specific activity for 4–7 h, the irradiance wasreduced to a level which caused no net change in the starchcontent of the leaf, and the supply of 14CO2 was removed. Therewas no significant change in specific activity of starch overthe following 6–10 h, thus there was no exchange of 14C-starchwith 12C-assimilates entering the chloroplasts. Starch, turnover, 14C-labelling, pepper, Capsicum annuum L.  相似文献   

12.
Rates of photosynthesis (net CO2 uptake in saturating light)of leaves sampled from phosphorusdeficient subterranean cloverplants (Trifolium subterraneum L. cv. Mt. Barker) were lowerthan those of non-deficient leaves. When comparable deficientleaves were placed in solutions containing 0.13 mM Pi1, therewere no responses in photosynthesis, even though earlier resultshad established these solutions as optimal for responses forintact deficient plants. Deficient leaves, placed for the first12 h after detachment in solutions of increasing Pi1 concentrations(0.15, 0.70, 2.0, and 6.0 mM) and then in distilled water, showedmarked increases in photosynthesis in the three higher phosphatetreatments on the first day after detachment. During the following6 d the decline in photosynthesis was less the higher the initialphosphate treatment. By contrast, non-deficient leaves in thesame treatments showed a decline in photosynthesis with increasingphosphate levels, due to leaf damage in the two highest treatments(phosphorus toxicity). Rates of photosynthesis of deficient leaves kept for 3 h in3 or 6 mM FDP1 or G-6-P1 increased within 24 h and remainedhigher than those for corresponding leaves in 0.13 mM Pi ordistilled water. There were no differences between the sametreatments for non-deficient leaves, thus enabling a clear distinctionbetween leaves that were deficient and those that were not.There was no leaf damage in these solutions, even after 48 h.AMP1 or ADP1 had no effect. ATP1 and 3-PGA1 caused toxicitysymptoms. Fructose itself (6 mM) had no effect on photosynthesis.  相似文献   

13.
Under anaerobic atmosphere where the gas phase was simply replacedby N2, photo-inhibition of PS I of isolated spinach chloroplastswas insignificant. However, when dithionite was included inthe irradiation mixture, severe photoinhibition of the NADP+and the MV photo-reduction occurred. Neither P700 determinedby continuous illumination-induced difference spectroscopy,Fe-S centers determined by EPR under cryogenic temperatures,nor vitamin K-l determined by HPLC analysis were significantlydecreased under these photoinhibition conditions. Although photobleachingof antenna chlorophylls occurred to more or less extent, NADP+photoreduction activities were markedly depressed even undersaturating actinic light. The maximal amplitude of the flashinduced absorbance changes of P700 in ms range decreased almostin parallel with the loss of NADP+ photoreduction activity.These results indicate that although the Fe-S centers of thephotoinhibited chloroplasts were reducible by continuous illumination,to almost the same extents as that of the control chloroplasts,the efficiency of reduction by each flash was much lower thanthat of the control chloroplasts. The site of photoinhibitionin PS I under extremely reducing conditions is between A0 andFe-S X. (Received July 28, 1988; Accepted October 31, 1988)  相似文献   

14.
The photochemical activity of chloroplasts and subchloroplastparticles isolated from primary bean leaves between the 4thand 24th hour of illumination of etiolated seedlings is thesubject of this paper. The photosystem I activity (oxygen uptakein the presence of MV, DCIP, ascorbate and DCMU), expressedon a unit chlorophyll basis, decreased approximately 10-foldbetween 4 and 8 h of greening. At the same time the photosystemII activity (DCIP photoreduction in the presence of DPC) wasreduced to a half. The photosystem I activity also decreasedin all hitherto investigated fractions which were isolated fromthe digitonin-treated chloroplasts. However, at the initialphase of greening this decrease was the most significant inthe fraction containing heavy particles. After 24 h of greening DCMU, at concentrations higher than 10–10M, limited the rate of ferricyanide photoreduction by isolatedchloroplasts, whereas after 6 h of greening this effect wasobservable even in the presence of 10–12 M DCMU. The resultsobtained demonstrated that under those conditions both photosystemswere active after 4 h of greening and PS I activity developedmore rapidly than that of PS II. It also follows from the presenteddata that the water splitting reactions were delayed in developmentas compared to the other reactions investigated, and that PSII units may limit the electron flow in chloroplasts at earlierstages of leaf greening.  相似文献   

15.
Preillumination of leaves of spinach, soybean and maize in theabsence of CO2 greatly enhanced the capacity for fixing CO2in an immediately following dark period. Lightenhanced darkCO2-fixation was further observed in isolated chloroplasts ofspinach and soybean. When isolated chloroplasts were illuminated,CO2-fixing capacity in the subsequent dark period increasedrapidly at first and later more slowly attaining a stationaryvalue in about 20 min. When the light was turned off at thisstage, the capacity decreased very rapidly becoming zero inabout 10 min. The magnitude of the enhanced dark fixation andits decay in the dark were not influenced by the presence orabsence of atmospheric oxygen. In both leaves and isolated chloroplasts,no significant change in oxygen (21%) occurred in distributionpatterns of radioactivity in products fixed by photosynthetic,or light-enhanced, dark, 14CO2-fixation. In preilluminated leaves14C was incorporated into sucrose in the subsequent dark period,indicating that the photosynthetic carbon reduction cycle isoperating in light-enhanced dark fixation in higher plants. 1Present address: Noda Institute for Scientific Research, Noda,Chiba Prefecture (Received August 10, 1970; )  相似文献   

16.
The stimulatory effect of CO2 upon the HILL reaction by isolatedchloroplasts was observed with erythrocyte carbonic anhydraseas a supplementary agent for CO2 deprivation. Addition of thisenzyme to the reaction media remarkably shortened the time requiredto obtain the maximal effect of CO2 The degree of stimulationwas rather small (below 50 per cent) and varied depending onthe preparation of chloroplasts. In general, the effect wasgreater with broken chioroplasts than with whole chloroplasts.The lowering of light intensity diminished the CO2-effect. 1 Present address: Laboratory of Biological Chemistry, TokyoInstitute of Technology, Meguro-ku, Tokyo. (Received April 6, 1962; )  相似文献   

17.
Both KMnO4 and HCHO in concentrations used for fixation forelectron microscopy induce pronounced swelling of spinach chloroplasts.However, since electron microscopy samples small numbers, itis possible to overlook the swelling effect because the sizerange of the swollen chloroplasts can overlap the extremelywide range of chloroplasts in living mesophyll cells. HCHO fixesspinach chloroplasts only after 16 hr incubation, as verifiedby failure of the chloroplaststo swell when subsequently washedwith water. However, the HCHO treatment fails to prevent aninitial swelling and KMnO4 further swells chloroplasts pre-fixedwith HCHO. Spinach chloroplasts in vivo measured in face area27.7 0.06 µ2 mean value, 23.8 µ2 mode value, range6.2 to 102.9 µ2, and their distribution is skewed so thatthe coefficient of skewness is 0.15. Chloroplasts isolated directlyinto phosphate buffered 4% HCHO after 24 hrs measured in facearea 58.2 µ2 mean value, 46.5 µ2 mode value, range22 to 121 µ2, and the coefficient of skewness increasedto 0.24. When such chloroplasts were additionally treated withphosphate buffered 2.8 % KMnO4 the spinach chloroplasts measuredin facearea 96.4 1.40 µ2 mean value, 86.1 µ2 modevalue, range22 to 203 µ2, and the coefficient of skewnessunchanged at 0.24. Volumes of spinach chloroplasts isolatedin NaCl as reported in the literature approach the volumes ofchloroplasts swollen by HCHO and KMnO4. Some problems concerningsampling difficulties because of wide size ranges and skeweddistributions are discussed. 1 Present address: Department of Agriculture, Bangkhen ExperimentStation, Bangkok, Thailand. 2 Present address: Department of Biology, Wright State University,Dayton, Ohio 45431 U.S.A.  相似文献   

18.
Reactivation of photosynthetic oxygen-evolution was investigatedwith chloroplasts inhibited by 0.8 M Tris-, 0.8 M Tris-20% acetone-,0.8 M KCl-, 0.5 M NaClO4- or 1 mM NH2OH-washing, and with heat-treatedor aged chloroplasts. These chloroplasts restored oxygen evolvingactivity by two successive treatments; incubation of chloroplastswith reduced DPIP, then with Mn2$, Ca2$, dithiothreitol andbovine serum albumin under weak illumination (light-reactivation). Some factors required for light-reactivation could be omitteddepending on the inhibition treatment. For example, Mn2$, Ca2$and dithiothreitol were not necessary for (1 mM NH2OH-STN (pH7.0)-washed)-DPIP-treated chloroplasts, and dithiothreitol for(Tris-acetone (pH 8.4)-washed)-DPIP-treated chloroplasts. Uncouplers, such as atebrin, CCCP, DCCD and NH4Cl, inhibitedthe lightreactivation. The Mn and Ca contents of the chloroplasts were determined withinhibited and DPIP-treated chloroplasts. The Mn content of thechloroplasts tended to decrease with increasing pH of the washingmedium for inhibition. The Ca content decreased when chloroplastswere washed with 0.8 M KCl. (Received November 22, 1974; )  相似文献   

19.
Dependence of Hill reaction (ferricyanide reduction) by isolated(broken) chloroplasts on bicarbonate ion increases with timeof illumination (upto 4 min) in HCO3- free reaction mixture.The stimulation caused by HCO3- is independent of light intensitydown to very low intensities indicating an involvement of thision in early photochemical events of photosystem II. Oxygenevolution was found to be more dependent than ferricyanide reductionon HCO3-. The existence of an endogenous non-oxygen evolvingelectron donor in chloroplasts is thus suggested. HCO3- is alsoshown to greatly increase the rate of photoinactivation duringHill reaction. (Received March 2, 1974; )  相似文献   

20.
Illuminated intact spinach chloroplasts decomposed one moleculeof H218O2 which resulted in the evolution of a half moleculeof 16O2, but little 18O2. The chloroplasts showed the same rateof photoreduction of 18C2 as that of the evolution of 16O2 withoutaccumulation of H218O2. These reactions were suppressed by DCMU,and also by several inhibitors of ascorbate peroxidase and dehydroascorbateand monodehydroascorbate reductases in chloroplasts. These observationsindicate that the hydrogen peroxide produced in chloroplastsis reduced to water by a peroxidase using a photoreductant asthe electron donor. The hydrogen peroxide scavenging systemof chloroplasts was inactivated if hydrogen peroxide was addedin the dark, but not if added during the light. (Received May 4, 1984; Accepted July 10, 1984)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号