首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Markus Eck  Tobias Hirsch   《Solar Energy》2007,81(2):268-279
Parabolic trough power plants with direct steam generation technology are a promising option for the production of electricity from renewable energy resources. For the layout of the collector field and the design of the control system the knowledge of the short-time dynamics is of essential importance. To study the dynamic behaviour a transient non-linear simulation tool is developed based on the Modelica language. The impact of over-all and local shadings of an 1000 m collector loop is simulated. Different feed water control systems are developed, implemented and evaluated. It turns out that in addition to the liquid level control of the buffer tank a fast feedback of the actual steam production is necessary for a good performance. For the case of steam temperature control by an injection cooler, it is shown that feedforward control significantly reduces the temperature deviations compared to a simple proportional–integral controller. The reaction of the controlled loop is simulated under a varity of irradiation disturbances. A key finding is that the orientation of the collector field relative to the moving clouds has large impact on the peak values during transients.  相似文献   

2.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

3.
Saturated steam process with direct steam generating parabolic troughs   总被引:3,自引:0,他引:3  
M. Eck  E. Zarza 《Solar Energy》2006,80(11):1424-1433
The direct steam generation (DSG) in parabolic trough collectors is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi Megawatt range. The European DISS project has proven the feasibility of the direct steam generation under real solar conditions in more than 4000 operation hours. Within the European R&D project INDITEP the detailed engineering for a pre-commercial DSG solar thermal power plant with an electrical power of 5 MW is being performed. This small capacity was chosen to minimise the risk for potential investors.In regards to DSG solar thermal power plants, only steam cycles using superheated steam have been investigated so far. The paper will investigate the advantages, disadvantages, and design considerations of a steam cycle operated with saturated steam for the first time. For near term applications, saturated steam operated DSG plants might be an interesting alternative for power generation in the small capacity range due to some specific advantages:
• Simple set up of the collector field.
• Proven safe collector field operation.
• Higher thermal efficiency in the collector field.
Keywords: Solar thermal power plants; Direct steam generation; Parabolic trough; Saturated steam; System analysis  相似文献   

4.
Direct steam generation (DSG) in parabolic trough solar collectors is a feasible option for economic improvement in solar thermal power generation. Three-dimensional Eulerian two-fluid simulations are performed under OpenFOAM to study the turbulent flow in the evaporation section of the parabolic trough receiver and investigate the phase change, and pressure drop of water as a heat transfer fluid. First, the model's validity has been tested by comparing the numerical results of a laboratory scale boiler with the available correlations and semi-correlations of boiling flows from the literature. Simulations agreed well with Rouhani–Axelsson correlation for horizontal tubes, with a mean relative error of less than 7.1% for all studied cases. However, despite a mean relative error of less than 13.19% compared to the experimental data in the literature, the reported pressure drop factor remains valid; overprediction remains tolerable for most engineering applications. Second, the scaling effect on the mathematical model, from laboratory to commercial-scale configuration, was tested with experimental data of the DISS test loop in Platforma Solar de Almeria, Spain. The Monte Carlo Ray Tracing method under the Tonatiuh package allowed for obtaining the nonuniform heat flux distribution. Due to the large size of the evaporation section in the DISS loop (eight collectors), each collector is considered independently in the simulations. Thus, simulations follow each other, taking the numerical results of each collector output as input data in the next collector and so on until the last. The numerical results showed an excellent agreement for the void fraction with 3.53% against the Rouhani–Axelsson correlation. Frictional pressure losses are within a 17.06% error of the Friedel correlation, in the range of previous work in the literature, and the heat loss is less than 4.69% error versus experimental correlation.  相似文献   

5.
This paper has analysed the effect of the utilization of internal finned tubes for the design of parabolic trough collectors with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account features as the pressure losses, thermal losses and thermo-mechanical stress and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

6.
In the current study, a solar energy power plant integrated with a biomass-based hydrogen production system is investigated. The proposed plant is designed to supply the required energy for the hydrogen production process along with the electrical energy generation. Thermochemical processes are used to obtain high-purity hydrogen from biomass-based syngas. For this purpose, the simulation of the plant is performed using Aspen HYSYS software. Thermodynamic performance evaluation of the hybrid system is conducted with exergy analysis. Based on the obtained results, the exergy efficiencies of the hydrogen production process and power generation systems are 55.8% and 39.6%, respectively. The net power output of the system is obtained to be 38.89 MWe. Furthermore, the amount of produced hydrogen in the integrated system is 7912.5 tons/year with a flow rate of 10.8 tons/h synthesis gas for 7500 h/year operation. Results show that designing and operating a hybrid high-performance energy system using two different renewable sources is an encouraging approach to reduce the environmental impact of energy conversion processes and the effective use of energy resources.  相似文献   

7.
Hydrogen, the inevitable fuel of the future, can be generated from biomass through promising thermochemical methods. Modern‐day thermochemical methods of hydrogen generation include fast pyrolysis followed by steam reforming of bio‐oil, supercritical water gasification and steam gasification. Apart from the aforementioned methods, a novice technique of employing combined slow pyrolysis and steam gasification can be also engaged to produce hydrogen of improved yield and quality. This review paper discusses in detail about the existing hydrogen generation through thermochemical methods. It elaborates the merits and demerits of each method and gives insight about the combined slow pyrolysis and steam gasification process for hydrogen generation. The paper also elaborates about the various parameters affecting integrated slow pyrolysis and steam gasification process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Expanders employed recently in organic Rankine cycle (ORC)‐based systems suffer from key problems including excessive working fluid leakage, thermal losses, low isentropic efficiency and high cost. The majority of the units available in the market are for medium and large‐scale applications (>100 kW) with no commercial micro‐scale expanders available and applicable for ORC units for residential and building applications. Moreover, the majority of the studies conducted on ORC expanders employed HFC and HCFC working fluids which have high global warming potential leading to negative environmental impacts. In this study, a micro‐scale CHP system based on the ORC technology is theoretically and experimentally investigated to provide the thermal needs and part of the electrical demands for residential applications. An innovative design for a hybrid ORC‐based micro‐CHP system is proposed using a biomass boiler and a solar concentrator to run the CHP system providing more reliable and clean operation compared to conventional natural gas‐driven units. The micro‐CHP system employs a new type small‐scale scroll expander with a compact design, integrating the generator and the turbine in a single unit. A numerical model was developed using the Engineering Equation Solver (EES) software to simulate the thermodynamic behaviour of the ORC unit predicting the thermal and electrical performance of the overall CHP system. In addition, an experimental setup was built to test the whole ORC–CHP system performance under different conditions, and the effect of various operational parameters on the system performance has been presented using an environmentally friendly HFE7100 working fluid. The maximum electric power generated by the expander was in the range of 500 W at a pressure differential of about 4.5 bars. The attained expander isentropic efficiency was over 80% at its peak operating conditions with no fluid leakage observed. Being mass‐produced with low cost in the automotive industry along with the high isentropic efficiency and the leakage‐free performance, the proposed compact scroll expander represents a potential candidate to be used in the development of micro‐scale ORC–CHP units for building applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
With the world energy shortage problem becoming increasingly prominent, more and more attentions have been paid to the development of renewable energies. Among these sources, solar energy has received extensive attention with its excellent characteristics. The thermal state affects the safety of the solar heat collection system. In this paper, real‐time monitoring of the input heat flux on the inside wall and the temperature field simultaneously of an absorber tube for parabolic trough solar collector were studied. Based on the measured temperatures on the outside wall, the fuzzy adaptive Kalman filter coupled with weighted recursive least squares algorithm (WRLSA) was employed to monitor the heat states of the absorber tube inversely, in which WRLSA was used to acquire the heat flux while fuzzy adaptive Kalman filter was adopted to monitor the temperature field. The method showed strong robustness to resist the ill‐posedness. Accurate monitoring results also can be acquired when there are random disturbances of the heat transfer condition on the inner wall.  相似文献   

10.
Javier Muñoz 《Solar Energy》2011,85(3):609-612
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

11.
The main driving forces behind the efforts to utilize various sources of renewable energy, energy efficiency, and reducing energy waste are the increasing level of greenhouse gasses and the climb in fuel prices. Energy storage is now gaining continuously increasing importance. It develops new sources of energy. The storage of energy in a suitable form, which can be converted into the required form, is a high challenge. Energy storage not only reduces the mismatch between supply and demand but it also improves the performance and reliability of energy system and contributes toward conserving energy. In this work, some research works carried out by the author and associates over the last 10 years are reviewed along with some other relevant works. These articles cover different systems involving energy sustainability, energy efficiency, green energy, and power augmentation related to compressed air energy storage, with and without humidification, plus with and without cooling (adiabatic). Comparison of the potential methods shows that compressed air storage with humidification is superior to other methods in energy ratio and primary energy efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
介绍了一种适用性广泛、效率高、能耗低的生物质燃料破碎技术。该技术与国外同类技术相比,综合破碎效率有所提高,综合吨料耗电量有所下降,购置费用降低70%,且维护方便。该技术的成功开发及应用,扩大了我国生物质发电燃料的利用范围,提高了生物质燃料破碎效率,降低了破碎作业成本,在生物质燃料供应方面有效地推动了我国生物质发电的技术进步。  相似文献   

13.
Hany Al-Ansary  O. Zeitoun 《Solar Energy》2011,85(11):3036-3045
Grid-quality parabolic trough collectors utilize expensive receivers that maintain vacuum in their annuli to reduce convection losses. On the other hand, receivers with air-filled annuli, currently used mainly for process heat applications, are significantly less expensive, but their thermal performance is inferior to evacuated receivers. A promising technique that can bridge the cost and performance gap between the two types of receivers is introduced in this work. A heat-resistant thermal insulation material is fitted into the portion of the receiver annulus that does not receive concentrated sunlight. The presence of this insulation material is expected to reduce not only convection heat losses, but also radiation losses. This study focuses on the calculation of conduction and convection heat losses from the proposed receiver using numerical modeling. The performance of the proposed concept is compared to that of a conventional receiver with an air-filled annulus. The results have shown that the combined conduction and convection heat loss from the proposed receiver can be smaller than that from a receiver with an air-filled annulus by as much as 25% when fiberglass insulation is used. However, the fact that the thermal conductivity of the insulating material increases with temperature reduces the benefit of the proposed concept at high temperatures. As a result, the proposed receiver is expected to be suitable as a replacement for receivers with air-filled annuli or as an economical alternative to evacuated receivers that are used at the lower temperature end of utility-scale solar power plants.  相似文献   

14.
生物质电厂上料系统和给料系统是生物质能发电工程的重要组成部分,其系统因工艺复杂、转点较多、设备选型多样化、日常维护不到位等问题导致输送系统故障率较高,而长期安全稳定运行关系到生物质发电厂的经济效益.通过介绍国内4家生物质发电厂上料和给料系统工艺,对比分析各厂上料和给料系统工艺特点及存在的问题.针对上料和给料系统的设计与运行提出了建议,并给出了简化输送系统的工艺方案,以供生物质发电厂上料系统和给料系统设计与运行管理人员参考.  相似文献   

15.
生物质能发电技术分析   总被引:5,自引:0,他引:5  
在不可再生能源濒临枯竭,环境污染日益加剧的今天,生物质能源替代化石能源利用的研究和开发,已成为国内外学者研究和关注的热点。介绍了国内外生物质能的主要转化利用技术,分析了生物质直接燃烧发电技术和气化发电技术,提出了符合能量梯级利用原则的生物质能发电方式,将是生物质能利用的主要形式。  相似文献   

16.
Direct steam generation (DSG) is one alternative to the current oil-based parabolic trough solar thermal power plants. Within the German research project ITES, the dynamic behavior of a DSG collector field and the interactions with the conventional power block are assessed in detail. A transient solar field model developed by DLR is used to simulate the steam temperature behavior. Artificial irradiance disturbances as well as real irradiance data are used as input to the system. The resulting main steam temperature gradients are then analyzed by Siemens considering the standards for steam turbines.This paper presents the transient simulation results of the steam temperature as well as the corresponding results of the steam turbine analysis. It is found that the occurring temperature gradients are challenging for a safe turbine operation, if a conservative control system is used. Therefore, the use of an additional thermal inertia to stabilize the steam temperature is suggested. Its impact is also analyzed and discussed in this paper.  相似文献   

17.
In this paper, an attempt has been made to develop a two‐axis tracking system for solar parabolic dish concentrator and experimentally evaluated the performance of the tracking system. In this proposed design, the sensor design uses the illumination produced by the convex lens on the apex of a pyramid to align the dish in‐line with the sun. The change in incident angle of the solar rays on the lens surface shifts the area of illumination from the apex of the pyramid towards its faces. Photodiodes placed on the faces of the pyramid are used as the sensitive elements to detect the movement of the sun. The sensor output is fed to a microcontroller‐based system to drive the stepper motor on the basis of the programmed algorithm such that it receives normal incidence of sunlight on the sensor. To evaluate the performance of the proposed system, a conventional available 1‐W photovoltaic (PV) panel is placed at the focal point to measure the short circuit current and open circuit voltage. With respect to the conventional solar PV panel, it is observed that the positioning accuracy of the proposed tracking system enhances the short circuit current of 0.11 A by 86%. Thus, the proposed tracking system can be used in a stand‐alone parabolic dish with concentrating PV module as the focal point for further studies.  相似文献   

18.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

19.
The aim of the current paper is to propose a study of a novel solar adsorptive cooling system, using activated carbon–ammonia pair, coupled with a parabolic trough collector (PTC) and a water-stainless steel heat pipe. A theoretical model, based on the thermodynamics of the adsorption process, heat and mass transfer within the porous medium and energy balance in the hybrid system components, is developed and a simulation code, written in FORTRAN, is carried out. This model, which has been validated by experimentation results, computes the temperature, pressure and adsorbed mass inside the adsorbent bed. The performance is assessed in terms of specific cooling power (SCP) and solar coefficient of performance (COPs). Furthermore, the effect of some important parameters on the system performance is discussed, and an optimization of these parameters is given.The simulation results have shown that there exists, for each aperture width value of the collector (W), an optimum external radius of adsorbent bed (R2). Under the operating and design conditions of evaporation temperature Tev = 0 °C, condensing temperature Tcon = 28 °C, adsorption temperature Tads = 24 °C, W = 0.70 m, R2 = 0.145 m and reactor length of 0.5 m, an optimal corresponding COPs is found to be of the order of 0.18.  相似文献   

20.
In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and $0.06–$0.07/kW‐h. The SOx emissions also decrease by about 190 tons/year (7.6 × 10?6 tons/MW‐year). Finally, the CCS cost is around $65–$72 per ton of CO2. For pre‐combustion CCS, sour shift appears to be superior both economically and thermally to sweet shift in the current study. Sour shift is always cheaper, (by a difference of about $600/kW and $0.02‐$0.03/kW‐h), easier to implement, and also 2–3 percentage points more efficient. The economic difference is fairly marginal, but the trend is inversely proportional to the efficiency, with cost of electricity decreasing by 0.5 cents/kW‐h from 0% to 10% biomass ratio (BMR) and rising 2.5 cents/kW‐h from 10% to 50% BMR. Pre‐combustion CCS plants are smaller than post‐combustion ones and usually require 25% less energy for CCS due to their compact size for processing fuel flow only under higher pressure (450 psi), versus processing the combusted gases at near‐atmospheric pressure. Finally, the CO2 removal cost for sour shift is around $20/ton, whereas sweet shift's cost is around $30/ton, which is much cheaper than that of post‐combustion CCS: about $60–$70/ton. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号