首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Qiu W  Neo SP  Yu X  Cai M 《Genetics》2008,180(3):1445-1457
Septins are a family of GTP-binding proteins whose heterooligomeric complex is the basic structural element of the septin filaments found in many eukaryotic organisms. In budding yeast, septins are mainly confined at the mother–daughter junction and are required for cell morphogenesis and division. Septins undergo assembly and disassembly in accordance with the progression of the cell cycle. In this report, we identified the yeast protein Syp1p as a new regulator of septin dynamics. Syp1p colocalizes with septins throughout most of the cell cycle. Syp1p interacts with the septin subunit Cdc10p and can be precipitated by Cdc10p and Cdc12p. In the syp1Δ mutant, both formation of a complete septin ring at the incipient bud site and disassembly of the septin ring in later stages of cell division are significantly delayed. In addition, overexpression of Syp1p causes marked acceleration of septin disassembly. The fluorescence recovery after photobleaching (FRAP) assay further showed that Syp1p promotes septin turnover in different cell cycle stages. These results suggest that Syp1p is involved in the regulation of cell cycle-dependent dynamics of the septin cytoskeleton in yeast.  相似文献   

2.
Septins are a family of eukaryotic guanosine phosphate-binding proteins that form linear heterooligomeric complexes, which, in turn, polymerize end-on-end into filaments. These filaments further assemble into higher-order structures at distinct subcellular locations. Dynamic changes in the organization of septin cortex structures appear during cell cycle progression. A variety of regulatory proteins and posttranslational modifications are involved in changes to the structure of septin assemblies during the entire cell cycle. In particular, septin-associated protein kinases mediate changes to septin higher order structures or interconnect cellular morphogenesis with the cell cycle. Yeast cyclin-dependent kinase, a master cell cycle regulator, is required for the initiation of a new septin ring. Here, using epifluoresence and electron microscopy, we show that upon phosphorylation by the Cdc28 kinase, septin filaments disassemble into hetero-octameric building blocks, and that filament depolymerization is specifically G1 cyclin-dependent.  相似文献   

3.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.  相似文献   

4.
The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy measurements indicated that septin filaments organized into pairs within live cells, just as has been observed in vitro. Additional support for the formation of pairs came from the observation of paired filaments at the cortex of cells using electron microscopy. Furthermore, we found that highly ordered septin structures exchanged subunits and rapidly rearranged. We conclude that septins assemble into dynamic, paired filaments in vivo and that this organization is conserved from yeast to mammals.  相似文献   

5.
Although the septin ring and collar in budding yeast were described over 20 years ago, there is still controversy regarding the organization of septin filaments within these structures and about the way in which the ring first forms and about how it converts into a collar at the mother-bud neck. Here we present quantitative analyses of the recruitment of fluorescently-tagged septins to the ring and collar through the cell cycle. Septin ring assembly began several minutes after polarity establishment and this interval was longer in daughter than in mother cells, suggesting asymmetric inheritance of septin regulators. Septins formed an initial faint and irregular ring, which became more regular as septins were recruited at a constant rate. This steady rate of septin recruitment continued for several minutes after the ring converted to a collar at bud emergence. We did not detect a stepwise change in septin fluorescence during the ring-to-collar transition. After collar formation, septins continued to accumulate at the bud neck, though at a reduced rate, until the onset of cytokinesis when the amount of neck-localized septins rapidly decreased. Implications for the mechanism of septin ring assembly are discussed.  相似文献   

6.
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However, the role of GTP binding and hydrolysis in filament formation has not been elucidated. Furthermore, several lines of evidence suggest that not all the subunits of the septin complex are required for all aspects of septin function. To address these questions, we have reconstituted filament assembly in vitro by using a recombinant Xenopus septin, Xl Sept2. Filament assembly is GTP dependent; moreover, the coiled-coil domain common to most septins is not essential for filament formation. Septin polymerization is preceded by a lag phase, suggesting a cooperative assembly mechanism. The slowly hydrolyzable GTP analog, GTP-gamma-S, also induces polymerization, indicating that polymerization does not require GTP hydrolysis. If the properties of Xl Sept2 filaments reflect those of native septin complexes, these results imply that the growth or stability of septin filaments, or both, is regulated by the state of bound nucleotide.  相似文献   

7.
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.  相似文献   

8.
9.
The septins are a family of cytoskeletal proteins present in animal and fungal cells. They were first identified for their essential role in cytokinesis, but more recently, they have been found to play an important role in many cellular processes, including bud site selection, chitin deposition, cell compartmentalization, and exocytosis. Septin proteins self-associate into filamentous structures that, in yeast cells, form a cortical ring at the mother bud neck. Members of the septin family share common structural domains: a GTPase domain in the central region of the protein, a stretch of basic residues at the amino terminus, and a predicted coiled-coil domain at the carboxy terminus. We have studied the role of each domain in the Saccharomyces cerevisiae septin Cdc11 and found that the three domains are responsible for distinct and sometimes overlapping functions. All three domains are important for proper localization and function in cytokinesis and morphogenesis. The basic region was found to bind the phosphoinositides phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate. The coiled-coil domain is important for interaction with Cdc3 and Bem4. The GTPase domain is involved in Cdc11-septin interaction and targeting to the mother bud neck. Surprisingly, GTP binding appears to be dispensable for Cdc11 function, localization, and lipid binding. Thus, we find that septins are multifunctional proteins with specific domains involved in distinct molecular interactions required for assembly, localization, and function within the cell.  相似文献   

10.
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.  相似文献   

11.
Septins are guanine nucleotide-binding proteins that form hetero-oligomeric complexes, which assemble into filaments and higher-order structures at sites of cell division and morphogenesis in eukaryotes. Dynamic changes in the organization of septin-containing structures occur concomitantly with progression through the mitotic cell cycle and during cell differentiation. Septins also undergo stage-specific post-translational modifications, which have been implicated in regulating their dynamics, in some cases via purported effects on septin turnover. In our recent study, the fate of two of the five septins expressed in mitotic cells of budding yeast (Saccharomyces cerevisiae) was tracked using two complementary fluorescence-based methods for pulse-chase analysis. During mitotic growth, previously-made molecules of both septins (Cdc10 and Cdc12) persisted through multiple successive divisions and were incorporated equivalently with newly synthesized molecules into hetero-oligomers and higher-order structures. Similarly, in cells undergoing meiosis and the developmental program of sporulation, pre-existing copies of Cdc10 were incorporated into new structures. In marked contrast, Cdc12 was irreversibly excluded from septin complexes and replaced by another septin, Spr3. Here, we discuss the broader implications of these results and related findings with regard to how septin dynamics is coordinated with the mitotic cell cycle and in the yeast life cycle, and how these observations may relate to control of the dynamics of other complex multi-subunit assemblies.  相似文献   

12.
Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.  相似文献   

13.
The septins are GTP-binding, filament-forming proteins that are involved in cytokinesis and other processes. In the yeast Saccharomyces cerevisiae, the septins are recruited to the presumptive bud site at the cell cortex, where they form a ring through which the bud emerges. We report here that in wild-type cells, the septins typically become detectable in the vicinity of the bud site several minutes before ring formation, but the ring itself is the first distinct structure that forms. Septin recruitment depends on activated Cdc42p but not on the normal pathway for bud-site selection. Recruitment occurs in the absence of F-actin, but ring formation is delayed. Mutant phenotypes and suppression data suggest that the Cdc42p effectors Gic1p and Gic2p, previously implicated in polarization of the actin cytoskeleton, also function in septin recruitment. Two-hybrid, in vitro protein binding, and coimmunoprecipitation data indicate that this role involves a direct interaction of the Gic proteins with the septin Cdc12p.  相似文献   

14.
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.  相似文献   

15.
The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother–bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p, Cdc10p, Cdc11p, and Cdc12p that is capable of forming long filaments in vitro. To investigate the relationship between these filaments and the neck filaments, we purified septin complexes from cells deleted for CDC10 or CDC11. These complexes were not capable of the polymerization exhibited by wild-type preparations, and analysis of the neck region by electron microscopy revealed that the cdc10Δ and cdc11Δ cells did not contain detectable neck filaments. These results strengthen the hypothesis that the septins are the major structural components of the neck filaments. Surprisingly, we found that septin dependent processes like cytokinesis and the localization of Bud4p to the neck still occurred in cdc10Δ cells. This suggests that the septins may be able to function in the absence of normal polymerization and the formation of a higher order filament structure.  相似文献   

16.
SUMO is a ubiquitin-related protein that functions as a posttranslational modification on other proteins. SUMO conjugation is essential for viability in Saccharomyces cerevisiae and is required for entry into mitosis. We have found that SUMO is attached to the septins Cdc3, Cdc11, and Shs1/Sep7 specifically during mitosis, with conjugates appearing shortly before anaphase onset and disappearing abruptly at cytokinesis. Septins are components of a belt of 10-nm filaments encircling the yeast bud neck. Intriguingly, only septins on the mother cell side of the bud neck are sumoylated. We have identified four major SUMO attachment-site lysine residues in Cdc3, one in Cdc11, and two in Shs1, all within the consensus sequence (IVL)KX(ED). Mutating these sites eliminated the vast majority of bud neck-associated SUMO, as well as the bulk of total SUMO conjugates in G(2)/M-arrested cells, indicating that sumoylated septins are the most abundant SUMO conjugates at this point in the cell cycle. This mutant has a striking defect in disassembly of septin rings, resulting in accumulation of septin rings marking previous division sites. Thus, SUMO conjugation plays a role in regulating septin ring dynamics during the cell cycle.  相似文献   

17.
Mammalian septins constitute a family of at least 12 GTP-binding proteins that can form hetero-oligomers and that are sometimes found in association with actin or microtubule filaments. However, their functions are not understood. Using RNA interference, we found that suppression of septin expression in HeLa cells caused a pronounced increase in microtubule stability. Mass spectroscopic analysis of proteins coprecipitating with Sept6 identified the microtubule-associated protein MAP4 as a septin binding partner. A small, proline-rich region in the C-terminal half of MAP4 bound directly to a Sept 2:6:7 heterotrimer, and to the Sept2 monomer. The trimer blocked the ability of this MAP4 fragment to bind and bundle microtubules in vitro. In intact cells, MAP4 was required for the stabilization of microtubules induced by septin depletion. Moreover, septin depletion increased the number of cells with abnormal nuclei, and this effect was blocked by gene silencing of MAP4. These data identify a novel molecular function for septins in mammalian cells: the modulation of microtubule dynamics through interaction with MAP4.  相似文献   

18.
E T Fung  R H Scheller 《FEBS letters》1999,451(2):203-208
Septins are a family of cytoskeletal proteins involved in cytokinesis, targeting of proteins to specific sites on the plasma membrane, and cellular morphogenesis. While many aspects of their function in cytokinesis in yeast cells have been investigated, the function of septins in mammalian cells is less well understood. For example, septins are present in post-mitotic neurons, suggesting they have other roles in, for example, establishing cell polarity. The full extent of the septin gene family is not known in mammalian cells. To better understand the septin gene family, we have cloned and characterized a novel mammalian septin.  相似文献   

19.
Endosomes transport lipids and proteins over long distances by shuttling along microtubules. They also carry mRNAs on their surface, but the precise molecular function of this trafficking process is unknown. By live cell imaging of polarized fungal hyphae, we show microtubule-dependent transport of septin mRNA and encoded septin protein on the same shuttling endosomes. Consistent with the hypothesis that septin mRNA is translated on endosomes, the accumulation of septin protein on endosomes requires the recruitment of septin mRNA. Furthermore, ribosomal proteins co-localise with shuttling endosomes, but only if mRNA is present. Importantly, endosomal trafficking is essential for an efficient delivery of septin protein to filaments at growth poles, a process necessary to establish unipolar growth. Thus, we propose that local mRNA translation loads endosomes with septins for assembly and efficient delivery to septin filaments.  相似文献   

20.

Background

Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins.

Methodology/Principal Findings

Here, we performed yeast two-hybrid screens with human septins 1–10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments.

Conclusions/Significance

If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the “group rule”, i.e. members of the same group (e.g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号