首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The plasma sheet moves earthward (equatorward in the ionosphere) after enhancements in convection, and the electrodynamics of this response is strongly influenced by Region 2 magnetosphere–ionosphere coupling. We have used Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) observations associated with two relatively abrupt southward turnings of the IMF to provide an initial evaluation of aspects of this response. The observations show that strong westward sub-auroral polarization streams (SAPS) flow regions moved equatorward as the plasma sheet electron precipitation (the diffuse aurora) penetrated equatorward following the IMF southward turnings. Consistent with our identification of these flows as SAPS, concurrent DMSP particle precipitation measurements show the equatorial boundary of ion precipitation equatorward of the electron precipitation boundary and that westward flows lie within the low-conductivity region between the two boundaries where the plasma sheet ion pressure gradient is expected to drive downward R2 currents. Evidence for these downward currents is seen in the DMSP magnetometer observations. Preliminary examination indicates that the SAPS response seen in the examples presented here may be common. However, detailed analysis will be required for many more events to reliably determine if this is the case. If so, it would imply that SAPS are frequently an important aspect of the inner magnetospheric electric field distribution, and that they are critical for understanding the response of the magnetosphere–ionosphere system to enhancements in convection, including understanding the earthward penetration of the plasma sheet. This earthward penetration is critical to geomagnetic disturbance phenomena such as the substorm growth phase and the formation of the stormtime ring current. Additionally, for one example, a prompt electric field response to the IMF southward turnings is seen within the inner plasma sheet.  相似文献   

2.
Polar regionSq     
Geomagnetically quiet day variations in the polar region are reviewed with respect to geomagnetic field variation, ionospheric plasma convection, electric field and current. Persistently existing field-aligned currents are the main source of the polar regionSq. Consequently, the morphology and variability of the polar regionSq largely depend upon both field-aligned currents and ionospheric conductivity. Since field-aligned currents are the major linkage between the ionosphere and the magnetosphere, the latter is controlled by solar wind state, in particular, the interplanetary magnetic field, the polar regionSq exhibits remarkable IMF dependence.  相似文献   

3.
We present a study of ionospheric and thermospheric response during a November 9–10, 2004 major geomagnetic storm event (DsT ~?300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.  相似文献   

4.
用Kamide-Matsushita方法,在行星际磁场具有较小的北向分量,且|By|>>|Bk|时,对磁语和磁扰状态以及Br>0和By<0等不同情况,分别计算了场向电流引起的电离层电势、电场和电流体系.结果表明,极隙区场向电流的存在使高纬向日面区域的电势发生畸变,当By>0时,无论是磁扰还是磁静日,极隙区电场具有显著的北向分量;等离子体对流有较大的西向分量;电离层电流为东向电流.当By<0时,电场和等离子体对流的方向与By>0时相反;电离层电流在磁抗日有西向分量,但在磁静日没有西向分量.电导率对电场和电流体系的影响十分明显,磁扰极光带电导率增强使电流涡从背阳面向向阳而漂移,与静日相比,磁扰时极隙区场向电流引起的电场畸变更为明显,但电场和电流强度的大小却基本保持不变.  相似文献   

5.
本文通过对TC-2卫星上搭载的中性原子成像仪(NUADU)在2004年11月发生的一次大磁暴期间观测到的一系列中性原子(ENA)图像的分析,试图给出环电流在磁暴期间的演化模式.研究表明,南向的行星际磁场(IMF)分量在离子从磁尾向内磁层注入和随后的环电流增长过程中起着关键的作用.IMF转为北向后,离子注入随即很快停止.在离子注入增强期间,离子的漂移路径是开放的,以致大量环电流离子从黄昏侧注入后快速地损失在黄昏至正午的磁层顶.所以,环电流往往在离子漂移路径从开放变为封闭后才达到最大强度,而不是在这之前,尽管那时的离子注入强度更大.在该磁暴主相期间,离子注入发生在17∶00~22∶00 LT范围内,形成极其不对称的环电流分布形态.而在恢复相期间,由于受大的IMF By分量的影响,离子注入区的地方时分布范围东向扩张.对称环电流在磁尾对流减小、离子漂移路径变为封闭形态之后形成.在磁暴恢复相后期,从ENA图像看环电流基本衰减到平静时期的水平,而Dst指数仍然显示较强的磁扰动,这说明越尾电流对Dst指数有很重要的影响.  相似文献   

6.
We use magnetic field-aligned mapping between the ionosphere and the magnetosphere to intercompare ground-based observations of storm enhanced density (SED), and plasmasphere drainage plumes imaged from space by the IMAGE EUV imager, with the enhanced inner-magnetosphere/ionosphere SAPS electric field which develops during large storms. We find that the inner edge of the SAPS electric field overlaps the erosion plume and that plume material is carried sunward in the SAPS overlap region. The two phenomena, SED in the ionosphere and the erosion plume at magnetospheric heights, define a common trajectory for sunward-propagating cold plasma fluxes in the midnight—dusk–postnoon sector. The SAPS channel at ionospheric heights and its projection into the equatorial plane serve to define the sharp outer boundary of the erosion plume. The SAPS electric field abuts and overlaps both the plasmasphere boundary layer and the plasmasphere erosion plume from pre-midnight through post-noon local times.  相似文献   

7.
We present Interball Tail Probe observations from the high latitude mid-tail magnetopause which provide evidence of reconnection between the interplanetary magnetic field (IMF) and lobe field lines during a 6 h interval of stable northward and dawnward IMF on October 19, 1995. Results from a global magnetohydrodynamic simulation for this interval compare well with the Interball observations. With the simulations, we provide an extended global view of this event which gives us insight into the reconnection and convection dynamics of the magnetosphere. We find that reconnection occurs in a region of limited spatial extent near the terminator and where the IMF and the lobe field are anti-parallel. Reconnected IMF field lines drape over the dayside magnetosphere, convect along the flanks into the nightside, and enter the magnetotail through a small entry window that is located in the flank opposite to the reconnection site. Ionospheric convection is consistent with previous observations under similar IMF conditions and exhibits a two cell pattern with a dominant lobe cell over the pole. The magnetic mapping between the ionosphere and the lobe boundary is characterized by two singularities: the narrow entry window in the tail maps to a 6 h wide section of the ionospheric lobe cell. A singular mapping line cuts the lobe cell open and maps to almost the entire tail magnetopause. By this singularity the magnetosphere avoids having a stagnation point, i.e., the lobe cell center maps to a tailward convecting field line. The existence of singularities in the magnetic mapping between the ionosphere and the tail has important implications for the study of tail–ionosphere coupling via empirical magnetic field models. Because the lobe–IMF reconnection cuts away old lobe flux and replaces it with flux tubes of magnetosheath origin, solar wind plasma enters the lobes in a process that is similar to the one that operates during southward IMF.  相似文献   

8.
The vertical geoelectric field measured at Vostok, Antarctica (78.5°S, 107°E, L=75.0) over the 13 month interval May 1979–May 1980 is correlated with the interplanetary magnetic field (IMF) components By and Bz at times when Vostok is connected to the dayside magnetosphere. No significant association with IMF Bx is found. The interaction of the solar wind and the Earth’s magnetic field generally results in anti-sunward plasma flow in the high-latitude, polar ionosphere driven by a dawn-to-dusk, cross polar cap potential difference pattern. Using the IZMEM model to infer the contribution of the cross polar cap potential difference to the potential difference between the ionosphere and the ground at Vostok for the measured IMF conditions, we show that this provides a viable mechanism for the IMF associations found. We demonstrate that the direct association of the geoelectric field with the cross polar cap potential difference is independent of a result (Park, 1976. Solar magnetic sector effects on the vertical atmospheric electric field at Vostok, Antartica. Geophysical Research Letters 3(8), 475–478) showing an 15% decrease in the vertical geoelectric field measured at Vostok, 1–3 days after the passage of IMF sector boundaries. Evidence is also presented supporting the Park result, for which a mechanism is yet to be confirmed.  相似文献   

9.
Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to 2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.  相似文献   

10.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   

11.
The suggestion that the polar cap can completely disappear under certain northward IMF conditions is still controversial. We know that the size of the polar cap is strongly controlled by the interplanetary magnetic field (IMF). Under a southward IMF, the polar cap is usually large and filled with weak diffuse polar rain electrons. The polar cap shrinks under a northward IMF. Here we use the global auroral images and coincident particle measurements on May 15, 2005 to show that the discrete arcs (due to precipitation of both electrons and ions) expanded from the dayside oval to the nightside oval and filled the whole polar ionosphere after a long (8 h) and strong (~5–30 nT) northward IMF Bz, The observations suggested that the polar cap disappeared under a closed magnetosphere.  相似文献   

12.
The convection of plasma in the high-latitude ionosphere is strongly affected by the interplanetary magnetic field (IMF) carried by the solar wind. From numerous statistical studies, it is known that the plasma circulation conforms to patterns that are characteristic of particular IMF states. Following a change in the IMF, the convection responds by reconfiguring into a pattern that is more consistent with the new IMF. Some early studies reported that the convection first begins to change near noon while on the dawn and dusk flanks and on the nightside it remains relatively unaffected for tens of minutes. Work by Ridley et al. (J. Geophys. Res. 103 (1998) 4023–4039) and Ruohoniemi and Greenwald (Geophys. Res. Lett. 25 (1998) 2913–2916) that was based on measurements with more global sets of instruments challenged this view. A debate ensued as to the true nature of the convection response. We follow the arguments of Lockwood and Cowley (J. Geophys. Res. 104 (1999) 4387–4391) and Ridley et al. (J. Geophys. Res. 104 (1999) 4393–4396) by reviewing recent results on the timing of the onset of the convection response to the changed IMF. We discuss the timing problem from the perspectives of observations and modeling. In our view, the onset of the ionospheric response to changed IMF is globally simultaneous on time scales of a few minutes. A physical basis for the rapid communication of effects in the dayside convection to the nightside has been demonstrated in magnetohydrodynamic simulations. We also offer some cautionary notes on the timing of convection changes and the use of global assimilative techniques to study local behavior.  相似文献   

13.
While the plasma convection in the Earth's magnetosphere was for a long timeconsidered to consist mostly of laminar flows with wide spatial extents, about adecade ago the phenomenon of bursty bulk flows (BBFs), which now could beunderstood as long, but narrow channels of fast earthward plasma flow in thecentral plasma sheet of the magnetospheric tail, was discovered. Soon after thisit became clear that such events are not exceptional, but a large portion of theearthward plasma flow in the inner part of the magnetospheric tail is organisedin this bursty, intermittent mode. Since the Earth's magnetosphere is connectedby highly conducting magnetic field lines with its ionosphere, the next logicalstep was the search for the ionospheric signatures of BBFs. We review the resultsobtained so far in this young field of Space Physics, in terms of theauroral and ground magnetic signatures caused by BBFs, the particle precipitationto the ionosphere, as well as of the ionospheric electrodynamics of the processesassociated with the BBFs in the magnetosphere. Finally, we briefly review somemodels of ionosphere-magnetosphere coupling with respect to their ability to explainthe ionospheric signatures observed.  相似文献   

14.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

15.
Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause.Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically <0.1 ergs/cm2 s, and lacks associated ion precipitation. A second category of Sun-aligned arcs with energy flux >0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the presence of ions does not fit the properties of polar rain, which can in any event be nearly absent for northward interplanetary magnetic field). One theory is that such arcs are associated with merging tailward of the cusp. Both of these common types of sun-aligned arcs fade within about 30 min of a southward IMF turning.The third, and rarest, category of sun-aligned arcs are intense, well detached from the auroral oval, contain plasma sheet origin ion precipitation as well as electrons, and persist for hours after a southward turning. These intense detached sun-aligned arcs can rapidly cross the polar cap, sometimes multiple times. Most events discussed in the literature as “theta-aurora” do not fit into this category (for example, although they may appear detached in images, they abut the oval in particle data, and do not have the persistence of detached events under southward IMF turnings). It is possible that no single theory can account for all three types of sun-aligned arcs.Solar energetic particle (SEP) events are at times used to demarcate polar cap open/closed boundaries. Although this works at times, examples exist where this method fails (e.g., very quiet conditions for which SEP reaches below L=4), and the method should be used with caution. Finally, it is shown that, although it is rare, the polar cap can at times completely close.  相似文献   

16.
Observations are presented of the polar ionosphere under steady, northward IMF. The measurements, made by six complementary experimental techniques, including radio tomography, all-sky and meridian scanning photometer optical imaging, incoherent and coherent scatter radars and satellite particle detection, reveal plasma parameters consistent with ionospheric signatures of lobe reconnection. The optical green-line footprint of the reconnection site is seen to lie in the sunward plasma convection of the lobe cells. Downstream in the region of softer precipitation the reverse energy dispersion of the incoming ions can be identified. A steep latitudinal density gradient at the equatorward edge of the precipitation identifies the general location of an adiaroic boundary, separating the open field lines of polar lobe cells from the closed field of viscous-driven cells. Enhancements in plasma density to the south of the gradient are interpreted as ionisation being reconfigured as it is thrust against the boundary by the antisunward flow of the viscous cells near noon. Each of the instruments individually provides valuable information on certain aspects of the ionosphere, but the paper demonstrates that taken together the different experiments complement each other to give a consistent and comprehensive picture of the dayside polar ionosphere.On sabbatical leave from Artic Geophysics, University Courses on Svalbard, N-9170 Longyearbyen, Norway  相似文献   

17.
用三维可压缩MHD数值模拟研究了在磁场重联过程中电子压力梯度项的效应研究结果发现在较高等离子体β,较小离子惯性尺度条件下,广义欧姆定理中压力梯度项在重联过程的作用不可忽略.在磁重联过程中,压力梯度项虽然没有明显改变磁场拓扑结构和重联速度,但它使电子和离子速度明显增大.由于在离子惯性尺度下,离子和电子运动解耦,电子是电流的主要载流子,所以场向电流也增大,并导致核心磁场明显增大.考虑到场向电流是磁层电离层耦合的一个重要因素,所以电子压力梯度项的引入加强了行星际磁场南向期间磁层电离层的耦合.电子压力梯度项还在重联区激发了波动,该波动可向重联区外传播.  相似文献   

18.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

19.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

20.
A standard pair of equations is used to describe the behaviour of a single monoenergetic particle (proton or electron) population on a geomagnetic flux tube drifting in the magnetosphere. When particle losses from the drifting flux tube into the ionosphere are neglected, this behaviour is adiabatic in a thermodynamic sense. For a population of particles with an isotropic pitch-angle distribution, the generalization of that system of equations is obtained by adding radial and azimuthal spatial diffusion terms. The magnetic field is taken to be dipolar in the inner magnetosphere. The potential electric field is assumed to consist of magnetospheric convection and corotation components. Experimental data are used to estimate the radial equatorial profiles of the plasma sheet pressure. Assuming that the local time and L-shell variations are separable and supposing steady-state conditions, the expressions for the diffusion tensor components are evaluated. The influence of spatial diffusion on the radial and azimuthal profiles of the plasma pressure in the inner plasma sheet is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号