首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拉应力对2205双相不锈钢耐点蚀性能的影响   总被引:1,自引:1,他引:0  
张东海  刘睿  程从前  赵杰 《表面技术》2016,45(3):12-16,126
目的探究分别在40℃和60℃下,拉应力与2205双相钢耐点蚀性能的关系。方法分析2205双相不锈钢在施加0、140、540 MPa三种拉应力的条件下,于临界点蚀温度以下(40℃)和临界点蚀温度附近(60℃)的3.5%Na Cl溶液中的动电位极化行为,并对比了不同拉应力对2205双相钢阻抗特性的影响。结果动电位极化曲线表明,140 MPa下点蚀电位稳定,40、60℃下击破电位分别为0.7、0.8 V;540 MPa拉应力使双相钢点蚀电位从无应力时的0.9 V下降至0.3 V。阻抗分析表明,40℃时所有样品均为单一阻抗特征,且阻抗值较大,应力会降低阻抗值。在60℃、开路电位条件下,0、140 MPa拉应力时具有较高阻抗,540 MPa拉应力时为具有点蚀萌生的阻抗弧;在60℃、600 m V偏压条件下,0、540 MPa拉应力时呈现点蚀阻抗特征,而140 MPa时阻抗仍较高。阻抗谱等效电路拟合结果结合不锈钢表面微观形貌表明,在40℃溶液中,OCP及600 m V偏压下试样表面均没有发生点蚀,应力对钝化膜电阻Rp没有明显影响,阻抗值为30 000Ω·cm2左右。温度升高至60℃后,钝化膜阻值明显降低;开路电位、540 MPa应力条件下不锈钢发生点蚀,阻抗值由0 MPa下的20 000Ω·cm2左右降到10 000Ω·cm2左右;在600m V偏压下,0、540 MPa拉应力时均发生点蚀,而140 MPa时均未发现点蚀。结论在40℃和60℃,140MPa拉应力可以抑制2205双相钢的点蚀,540 MPa拉应力则加速点蚀的发生。  相似文献   

2.
目的研究真空度对2205双相不锈钢在海水淡化环境中耐点蚀性能的影响。方法在1.5倍人工浓缩海水中,采用循环阳极极化曲线与电化学阻抗谱等电化学方法,研究了2205双相不锈钢的点蚀和再钝化行为,并通过扫描电子显微镜对极化后试样的腐蚀形貌进行分析。结果测试了七种不同真空状态下2205双相不锈钢的循环阳极极化曲线和电化学阻抗谱,发现随着真空度的升高,试样的自腐蚀电位和点蚀电位均不断降低,分别约从-256 m V和605 m V下降到-485 m V和363 m V(均vs.SCE),点蚀倾向明显增大。同时,Nyquist曲线中的半圆弧逐渐变得扁平,Bode图中的相位角约从80°下降到77°,但是点蚀电位与再钝化电位之差逐渐升高。不同真空度下循环阳极极化后,试样表面的点蚀坑形貌不完全相同,蚀坑数量随着真空度的升高而明显减少,当真空度升高为0.72时,点蚀坑尺寸明显减小。结论随着真空度的逐渐升高,不锈钢钝化膜的致密性和保护性降低,电化学阻抗值逐渐减小,耐点蚀性能变差,但是再钝化性能却有所增强。循环阳极极化后试样的腐蚀程度减小。  相似文献   

3.
固溶处理对2205双相不锈钢组织及钝化膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
用不同温度对2205双相不锈钢进行固溶处理,利用定量金相法及硬度法、电化学极化试验、电化学阻抗谱试验的方法研究固溶温度与2205双相不锈钢微观组织和钝化膜特性之间的关系。结果表明,当固溶温度为950 ℃时,有σ相存在,分布于铁素体/奥氏体晶界,当固溶温度为1000 ℃时,σ相消失,铁素体相比例随固溶温度的升高而升高,奥氏体相比例则呈相反规律;电化学试验和阻抗谱试验结果显示,材料在950 ℃时钝化膜稳定性和耐蚀性能最差,在1050 ℃时钝化膜稳定性和耐蚀性能最好。  相似文献   

4.
采用极化曲线,电化学阻抗谱和Mott-Schottky曲线研究了不同时效温度下,PH13-8Mo高强不锈钢在3.5%NaCl溶液中形成的钝化膜性能。结果表明:时效温度对PH13-8Mo高强不锈钢耐点蚀性能有影响,具体表现为:时效时间为4 h,随时效温度升高,于480~595℃温度区间点蚀电位持续降低,温度升至621℃时,点蚀电位升高。电化学阻抗谱结果表明:随时效温度升高,钝化膜表面阻抗先增大后减小,温度升高到621℃,阻抗增大,与极化曲线测试结果一致。Mott-Schottky测试结果表明,不同时效温度下PH13-8Mo高强不锈钢表面钝化膜的致密性不同。  相似文献   

5.
利用交流阻抗法、线性极化法、动电位极化法及Mott-Schottky分析法,研究了2205钢在不同温度、20 MPa静水压的3.5%Na Cl溶液中的电化学性质,通过SEM、EDS及白光干涉仪分析了电化学测试后2205钢的腐蚀形貌及腐蚀产物。结果表明,在模拟深海热液区环境中,2205钢在25℃下具有良好的耐点蚀能力;溶液温度达到65℃时,2205钢表面会出现明显的点蚀现象;溶液温度达到150和200℃时,2205钢表面会产生裂纹状点蚀坑;65℃时,点蚀坑主要发生在奥氏体相内,100~200℃时,点蚀坑主要发生在铁素体相内。随着模拟深海热液区温度的升高,2205钢的电化学阻抗及线性极化电阻先减小后增大,且在150℃的电化学阻抗及线性极化电阻最小;2205钢的点蚀电位随着温度的升高先负移后正移,其在模拟深海热液区中生成的钝化膜载流子密度随着温度的升高而增大。  相似文献   

6.
采用动电位和恒电位扫描方法研究了2205双相不锈钢在不同温度、不同极化电位和不同Cl-含量情况下的点蚀行为.结果表明:随着温度升高,2205双相不锈钢的点蚀击穿电位下降,钝化区间变窄;2205双相不锈钢在6%NaCl溶液中的临界点蚀温度约为56 ℃;当Cl-质量分数为6%?24%时,随Cl-含量增大,临界点蚀温度降低,...  相似文献   

7.
通过动电位极化、电化学阻抗和循环伏安法研究了温度对2205双相不锈钢在卤水中腐蚀行为的影响。结果表明:随着卤水温度的升高,2205双相不锈钢的自腐蚀电位降低,自腐蚀电流密度增大,电荷传递电阻降低,点蚀电位负移,钝化区间变窄,耐点蚀性能下降,腐蚀趋势加剧。  相似文献   

8.
采用电化学测试研究了S32750超级双相不锈钢在3.5%Na Cl溶液中的临界点蚀温度(CPT)及电化学腐蚀机理,结合试样点蚀前后的形貌变化,得出S32750不锈钢的临界点蚀温度为71℃。在低于临界点蚀温度时,不锈钢表面能形成稳定的钝化膜;高于临界点蚀温度时,由于Cl-的活性增加及钝化膜的溶解,不锈钢表面产生点蚀现象,且温度越高,点蚀越剧烈。构建了双相不锈钢S32750临界点蚀温度前后的电化学腐蚀模型。  相似文献   

9.
2205和316L不锈钢在氢氟酸中的电化学腐蚀行为   总被引:1,自引:0,他引:1  
通过动电位极化和电化学阻抗方法考察了2205双相不锈钢和316L不锈钢在5%(体积分数)HF溶液中的电化学行为,借助Mott-Schokkty曲线分析了两种不锈钢表面钝化膜的半导体特性。结果表明:两种不锈钢在氢氟酸溶液中都能发生钝化,且2205双相不锈钢的钝化区间范围更宽,维钝电流密度更低。2205双相不锈钢表面钝化膜表现出更高的钝化膜电阻和电荷转移电阻,其抗氢氟酸腐蚀性能优于316L不锈钢,这主要与2205双相不锈钢中的Mo和Cr含量高、表面钝化膜缺陷少、钝化膜易修复等因素有关。  相似文献   

10.
通过动电位极化和电化学阻抗方法考察了2205双相不锈钢和316L不锈钢在5%(体积分数)HF溶液中的电化学行为,借助Mott-Schokkty曲线分析了两种不锈钢表面钝化膜的半导体特性。结果表明:两种不锈钢在氢氟酸溶液中都能发生钝化,且2205双相不锈钢的钝化区间范围更宽,维钝电流密度更低。2205双相不锈钢表面钝化膜表现出更高的钝化膜电阻和电荷转移电阻,其抗氢氟酸腐蚀性能优于316L不锈钢,这主要与2205双相不锈钢中的Mo和Cr含量高、表面钝化膜缺陷少、钝化膜易修复等因素有关。  相似文献   

11.
采用腐蚀浸泡失重方法结合动电位极化曲线和电化学阻抗谱,研究了不同温度下2205双相不锈钢在不同浓度H2SO4溶液中的耐蚀性,并与传统的20R钢和316L不锈钢作对比。结果表明,三种材质的耐蚀能力由强到弱排序为:2205316L20R;硫酸浓度和温度对腐蚀速率的影响由强到弱排序都为:20R316L2205。在T≤40℃,2205双相不锈钢的腐蚀深度为0mm/a,耐蚀性等级为1级,评定为完全耐蚀;当温度增加至60℃且硫酸浓度为30%时,其腐蚀速率显著增加,腐蚀深度为27.026mm/a,耐蚀性等级为10级,评定为不耐蚀。高铬含量可以降低不锈钢材料的钝化电位,另一方面可以增强不锈钢表面钝化膜的修复能力,可能是2205双相不锈钢比316L和20R更耐蚀的本质原因。  相似文献   

12.
通过电化学阻抗谱、极化曲线、临界点蚀温度等方法,研究了254SMo超级奥氏体不锈钢在某电厂高炉煤气模拟冷凝液中的耐腐蚀性能。结果显示,随着溶液温度的升高,254SMo不锈钢电极的阻抗值降低,钝态电流密度增大。溶液温度较低时不锈钢循环极化曲线上出现了较小的滞后环,钝化膜的修复能力较好;当溶液温度为65℃时,循环极化曲线上出现了较大的滞后环,不锈钢表面钝化膜受到了点蚀破坏。254SMo不锈钢在模拟冷凝液中的临界点蚀温度为62℃。  相似文献   

13.
利用电化学方法,在不同温度下研究了2205双相不锈钢在卤水中腐蚀阴极反应的特性,结果表明,温度对氧在2205双相不锈钢表面的极限扩散电流密度影响显著,极限扩散电流密度随温度的升高先增大后减小,在76℃时达到最大值12.3μA/cm^2;高温下的高盐度卤水对处于阴极保护电位下的2205双相不锈钢仍具有破坏性。  相似文献   

14.
采用缝隙腐蚀试样,通过浸泡实验以及循环极化、电化学阻抗、电化学噪声、恒电位测试等电化学方法,研究了2205双相不锈钢(2205DSS)和304不锈钢(304SS)在5%(质量分数)氢氟酸溶液中的缝隙腐蚀行为。结果表明,两种不锈钢在氢氟酸溶液中都发生了缝隙腐蚀,但2205双相不锈钢腐蚀形成的蚀坑较浅,而304不锈钢腐蚀形成的蚀坑较深,且腐蚀面积更大。电化学测试结果表明,2205DSS的临界缝隙腐蚀电位E_(crev)和再钝化电位E_(rp)都高于304SS的,滞后环的面积也更小,钝化膜电阻和缝隙腐蚀发生时的电荷转移电阻也更大。2205DSS的白噪声水平更小,缝隙腐蚀反应更慢。同时,在相同外加电位下,2205DSS的缝隙腐蚀诱导期更长,缝隙腐蚀发生时电流更小,2205DSS的抗缝隙腐蚀能力优于304SS,这主要与两种材料表面所成钝化膜的组成和性能不同有关。  相似文献   

15.
采用电化学极化曲线和电化学阻抗技术对2205双相不锈钢在0.1%、1.0%及3.5%(质量分数,%)三种不同浓度的NaCl溶液中的腐蚀性能进行测试,采用点缺陷模型(PDM)对测试结果进行建模与分析。研究结果表明,2205双相不锈钢随着溶液浓度的升高抗点蚀能力下降,这是由于在钝化膜的生长过程中,氧离子缺陷产生于金属/膜界面,消耗于膜/溶液界面,而金属离子缺陷产生于膜/溶液界面,消耗于金属/膜界面;氧离子缺陷的迁移导致钝化膜的生长,而金属离子缺陷的迁移使得钝化膜发生溶解。同时,根据PDM模型理论并从金属相角度出发对2205不锈钢建立钝化膜溶解模型,可知2205双相不锈钢奥氏体相γ上的钝化膜可能比铁素体相α优先发生溶解。  相似文献   

16.
采用极化曲线法和交流阻抗法,分析了经1040℃(40 min)固溶处理后的2205双相不锈钢经不同时效温度和时间处理后在85℃饱和CO2地层水溶液中的电化学腐蚀特性,并借助金相显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)和能谱仪(EDS)观察其显微组织的变化。结果表明,当800~900℃时效后,双相不锈钢的自腐蚀电位随着时效温度的升高向正向移动,电流密度先增大后减小,在850℃时,钝化区间已不明显,腐蚀速率达到最大;在相同的时效温度下,随着时效时间的延长,自腐蚀电位愈正,钝化区间逐渐缩小直至消失,腐蚀速率随时间的延长逐渐增大。通过微观分析表明,时效析出相σ相是产生点蚀导致高温时效双相不锈钢耐电化学腐蚀能力下降的主要原因。  相似文献   

17.
采用动电位极化曲线、电化学阻抗谱以及Mott-Schottky曲线等电化学测试方法研究了2205不锈钢管路材料在流动海水中的耐点蚀性能,并对测试后的试样进行了腐蚀形貌观察。结果表明,抛光状态和钝化状态下,试样表面均出现了明显的点蚀形貌,点蚀电位在0.9~1.2 V之间。在静态环境中材料的耐点蚀性要强于流动海水中;随着流速上升,材料的耐点蚀性并未发生明显变化,但表面钝化膜在流动海水中失去了再钝化能力。2205不锈钢表面钝化膜呈现n型和p型两种半导体特征,说明不锈钢表面钝化膜呈现双层结构,主要由外层Fe的氧化物和内层Cr的氧化物组成。钝化处理后试样的耐点蚀性能有所上升,但钝化膜的半导体性质未发生明显变化。海水冲刷使得不锈钢耐点蚀性能下降,不同表面处理的2205不锈钢在海水冲刷下表面钝化膜特性差异导致不锈钢点蚀敏感性不同。  相似文献   

18.
采用交流阻抗谱、动电位极化和SEM、EDS研究了CO_2分压力对2205双相不锈钢(DSS)在酸性油气田环境下腐蚀行为的影响。结果表明,2205 DSS在酸性油田模拟溶液中腐蚀形貌为点蚀,点蚀位置存在夹杂物CaO-SiO_2-MnO,导致钝化膜结构不稳定。2205 DDS在酸性油田模拟溶液中,在浸泡初期,随CO_2分压的增加,FeCO_3沉积率增加,电极表面腐蚀产物膜逐渐完整,导致腐蚀速率先增后降。随着浸泡时间的延长,2205 DSS表面的钝化膜被酸性介质溶解,保护性下降,腐蚀速率增加。当浸泡至30 d时,随CO_2分压的增加,侵蚀较为容易地穿过产物膜到达基体表面,导致材料在成膜较好的情况下平均腐蚀速率增加。  相似文献   

19.
采用极化曲线,电化学阻抗谱和Mott-Schottky曲线研究了不同时效温度下,13Cr15Ni4Mo3N高强不锈钢在3.5%NaCl溶液中形成的钝化膜性能。结果表明:相同时效时间下,随时效温度升高,于350~625℃温度区间,点蚀电位先降低后升高。电化学阻抗结果表明:随时效温度升高或时效时间延长,钝化膜的致密性先降低后升高。Mott-Schottky曲线计算表明:钝化膜缺陷扩散系数随时效温度升高先增加后减小,表面钝化膜的稳定性随时效温度先降低后升高,与极化曲线、电化学阻抗谱测试结果一致。  相似文献   

20.
通过循环伏安、双环电化学动电位再活化法、肖特基曲线和浸泡腐蚀试验对350、450、500、535、675℃回火4 h的AM355不锈钢的点蚀电位、晶间腐蚀敏感性和表面钝化膜性能进行研究,金相显微镜、扫描电镜和透射电镜观察微观组织和腐蚀形貌;探讨了不同回火温度对该不锈钢的腐蚀性能影响机制。结果表明:450℃回火时碳化物在原奥氏体晶界析出,在p H=1的3.5%Na Cl溶液中发生晶间腐蚀;在3.5%Na Cl溶液中,点蚀电位随回火温度的升高先降后升,500℃回火点蚀电位最低,点蚀电位的值与钝化膜内施主密度、受主密度相关性不明显,腐蚀优先在片状富Cr、Mo相周围发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号